

 A JOURNAL OF HIGHWAY RESEARCH
 FEDERAL WORKS AGENCY PUBLIC ROADS ADMINISTRATION

PUBLC ROADS ...
 Highway Research

issued by the

FEDERAL WORKS AGENCY PUBLIC ROADS ADMINISTRATION

D. M. BEACH, Editor

Volume 22, No. 11
January 1942
The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

Distribution of Motor-Vehicle Registrations and Tax Payments by Regions and Population Groups 235
Substitution of Paint Coatings for Metallic Zinc Coatings 259
THE PUBLIC ROADS ADMINISTRATION Willard Building, Washington, D. C. REGIONAL HEADQUARTERS 720 Phelan Building, San Francisco, Calif.
DISTRICT OFFICES
DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
720 Phelan Building, San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.254 New Customhouse, Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.1109 Main Post Office Building, St. Paul, Minn.DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
729 U. S. Courthouse, Kansas City, Mo.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.Room 502, United States Courthouse, Fort Worth. Tex.
DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.

DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, and Tennessee.
Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. 76 State St., Albany, N. Y.
DISTRICT No. 10. Delaware, Maryland, Ohio, Pennsylvania, and District of Columbia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419. Federal and Territorial Building, Juneau, Alaska. DISTRICT No. 12. Idaho and Utah.

Federal Building, Ogden, Utah.
DISTRICT No, 14. North Carolina, South Carolina, Virginia, and West Virginia.

Montgomery Building, Spartanburg, S. C.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institution other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain PUBLIC ROADS can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

DISTRIBUTION OF MOTOR -VEHICLE REGISTRATIONS AND TAX PAYMENTS BY REGIONS AND POPULATION GROUPS

BY THE DIVISION OF CONTROL, PUBLIC ROADS ADMINISTRATION

Reported by RALPH S. LEWIS, Associate Highway Engineer-Economist and HOMER L. BAKER, Associate Transportation Economist

SINCE 1921 the Public Roads Administration has been collecting from the States and publishing in the form of annual statistical tables data on motorvehicle registrations, motor-vehicle registration fees, and motor-fuel taxes for the individual States. ${ }^{1}$ Until very recently these data were available for areas smaller than the State in only a few instances; but with a growing interest in highway problems there came a realization of the usefulness of such data in connection with highway administrative and legislative programs, and with the initiation in 1935 of the State-wide highway planning surveys there came a means of obtaining these more detailed data. ${ }^{2}$
Fundamentally, the highway planning surveys are a series of related fact-finding studies with the common purpose of taking stock of the physical aspects of our present highway plant, finding out how it is being used, examining its financing, and seeing how it fits economically into the national transportation picture. It is the purpose of this report to present for the various rural and urban areas of the several States data on motor-vehicle registrations, motor-vehicle registration fees, and motor-fuel taxes, data that are now available for the first time as a result of the planning surveys.
One of the financial studies of the highway planning surveys, the motor-vehicle allocation study, was devised to obtain such information relative to motor-vehicle registrations and fees and motor-fuel tax payments beyond or in addition to the data that may be obtained from records regularly kept by the State. As its name implies, the motor-vehicle allocation study has as its primary purpose the collection and analysis of information concerning the geographical distribution or location of all classes of motor vehicles in a particular State, together with the corresponding motor-vehicle registration fees and motor-fuel taxes paid by their owners. In practically all States records of total motor-vehicle registrations, motor-vehicle registration fees, and motor-fuel taxes for each of the several classes of motor vehicles are readily available, but in no State are similar records for the various rural and urban areas within the State available.

It was intended that these data as determined by the motor-vehicle allocation study would be available for use, together with other data obtained in the surveys, in connection with setting up equitable bases for obtaining the necessary highway funds in a particular State and for apportioning those funds among the several classes of roads in the State. Since it is difficult to foresee exactly what types of information will be required for such an undertaking, a considerable amount of supplemental information was obtained.

[^0]This supplemental information was in addition to the primary information relative to the location of motor vehicles and corresponding motor-vehicle registration fees and motor-fuel tax payments, and included data on year model or age, weight, capacity, and, in some cases, owner's occupation. The information obtained was in general the same for each of the States in which the motor-vehicle allocation studies were conducted.

data obtained by means of questionnaires

The data for the motor-vehicle allocation study were collected by means of questionnaires which were mailed or otherwise distributed to vehicle owners in each of the States in which the surveys were conducted. Approximately $3,300,000$ of these questionnaires were completed and returned by motor-vehicle owners to the several planning survey organizations. The motorvehicle owner was requested in every case to designate the county and also the name of the city, town, or rural district in which he resided. The vehicle description that was requested included the year of manufacture or year model, the passenger capacity of passenger cars and busses, and the carrying capacity of trucks. In some States the body type of all vehicles was requested, and if licensing practices were dependent upon such characteristics as empty weight or gross load, these data were also requested. In those States which did not have a flat rate registration fee the amount of the registration fee paid was also requested on the questionnaire. Finally, the vehicle owner was asked to make a statement of the number of miles driven during the year within the State of residence and in other States and of the average miles traveled per gallon of gasoline used, and to indicate whether these mileage and gasoline consumption data were based upon actual records or estimates.

The motor-vehicle allocation study data at this point represent only those vehicles whose owners completed and returned questionnaires. In order to prepare tabulations representing total motor-vehicle registrations, total motor-vehicle registration fees, and total motor-fuel tax receipts, these data were expanded statistically to give the required distributions of these known totals which were available from State records. Because annual mileage is related generally to the age of the vehicle, one of the most important control factors in connection with the expansion of annual mileages and gasoline consumptions and the subsequent determination of average annual mileages and average gasoline consumptions was that of year model. The motor-vehicle departments and related agencies supplied the basic data on total motor-vehicle registrations, total motor-vehicle registration fees, and total motorfuel taxes in each State and the year-model control data were obtained in most cases from an analysis of the State registration records made for that particular

Figure 1.-Grouping of States by Regions.
purpose. The data obtained from the questionnaires were correlated with these data and expanded by individual year models for each of the several rural and urban areas within the State.

Approximately one questionnaire in every five indicated that the mileage and gasoline consumption data were based on records rather than estimates. The questionnaires based on records reported on the average considerably higher annual mileages than those based on estimates, as would be expected in view of the fact that those owners who keep records are in a majority of cases salesmen and other high mileage drivers who are required to keep records. The indicated miles traveled per gallon of gasoline used, on the other hand, were approximately the same for both records and estimates. The questionnaires further indicated that owners of newer cars returned a considerably larger proportion of questionnaires, on the basis of relative registrations, than did the owners of older cars, and thus demonstrated a further reason for the year-model control.

The results of the motor-vehicle allocation studies are now available for all States except Connecticut, Massachusetts, New Jersey, Rhode Island, Mississippi, New York, and Delaware. In order to complete the present study and to present national averages, the data for these States were estimated on the basis of corresponding data from similar adjacent States. Complete or partial year-model data as of the year of the motor-vehicle allocation studies and based on analyses of registration records are available for all of the States except Delaware, Georgia, Iowa, Mississippi, New Jersey, New York, Ohio, Pennsylvania, Texas, and the District of Columbia.

All data collected for the motor-vehicle allocation studies have been summarized on a population-group basis, with a primary division between rural and urban areas and with urban areas further classified on a population basis, as follows:
Unincorporated areas
Incorporated places having a population of -

$$
\begin{aligned}
& 1,000 \text { or less } \\
& 1,001-2,500 \\
& 2,501-5,000 \\
& 5,001-10,000 \\
& 10,001-25,000 \\
& 25,001-50,000 \\
& 50,001-100,000 \\
& 100,001-250,000 \\
& 250,001-500,000 \\
& 500,001-1,000,000 \\
& \text { Over } 1,000,000
\end{aligned}
$$

This same grouping is used in the present study, and is
applicable to all States except Maine, New Hampshire, Massachusetts, and Rhode Island, where, because of the nature of local governmental units, no unincorporated areas exist, and all units are classified on the basis of total population. Vermont and Connecticut would ordinarily be included in this list of excepted States, all of which are in New England, but because of the existence of incorporated villages and cities in Vermont, and boroughs in Connecticut, it was possible for planning survey purposes and in this study to handle these two States on a basis similar to that existing in the majority of States.

Of particular use in connection with the present study are those tabulations of the motor-vehicle allocation data that indicate by population groups for each State the distribution of ownership of motor vehicles of each type, the amounts of motor-vehicle registration fees and motor-fuel taxes paid by the owners of these vehicles, the average annual mileages traveled by motor vehicles of each type, and finally the year-model distribution of these vehicles. The tabulations that indicate the distribution of ownership of motor vehicles and corresponding payments of motor-vehicle registration fees and motor-fuel taxes present data on private vehicles owned by residents, on private vehicles registered in the State but owned by nonresidents, on public vehicles and, in the case of motor-fuel taxes, on "foreign" vehicles (private vehicles not registered in the State). Data in this report, however, are limited to private vehicles of residents and nonresidents; data on foreign vehicles and on public vehicles are excluded.

DATA PRESENTED BY GEOGRAPHIC REGIONS

Since the primary emphasis is placed upon the differences existing between population groups rather than upon those existing between States, the study does not in general present data for individual States. There are, however, important regional differences that cannot be overlooked in the study, and for that reason the data are presented by geographic regions. The regional classification that has been selected is based upon economic and geographic characteristics of the States. This classification, which is shown in figure 1, was used in an earlier study of trends in motor-vehicle registrations and receipts. ${ }^{3}$ The regions, although few in number, are sufficient to show those important sectional differences that do not exist between individual States in the same section. In the case of the year model studies, complete data are available for only a relatively few States and it is not possible to present such data on a regional basis at this time.

The motor-vehicle allocation studies were carried on in most States for the registration year 1936, and the general method of the present study is to use the population group distributions of those studies for determining the population group distributions of motorvehicle registrations and fees and motor-fuel taxes for the year 1939. The basic control data used in the study were provided by the Public Roads Administration's annual statistical tables for 1939. Data from these tables were allocated to population groups on the basis of the individual motor-vehicle allocation studies, so that the final results represent the best possible distributions of the latest available control data.

[^1]Although shifts in population and other factors may, over a period of years, change to an appreciable extent the relative distribution of motor vehicles in a particular area, it is believed that a shift of population or other change over a period of approximately 3 years and within a region as large as those selected for this study would not significantly alter the basic distribution.

Only the $31,925,791$ private and commercial vehicles registered in 1939 have been considered in this study. Publicly owned vehicles, which totaled 416,996 in 1939, have been excluded from consideration because they are not comparable with privately owned vehicles insofar as the payment of highway-user taxes is concerned.

A variety of practices exists in the registration of vehicles owned by the Federal and State Governments and by the counties and local units of government. Vehicles owned by the Federal Government are, in general, exempt from the payment of registration fees and from State motor-fuel taxes. However, some States require vehicles owned by the Federal Government to be registered although no fee is charged. In other States these vehicles are required to carry license plates for which nominal fees are charged. Some Federal agencies request regular license plates to be used on their vehicles instead of the official license plates of the Federal Government. In most States these plates are furnished without charge but in others nominal fees are charged. The variety of practices followed results in some confusion in the registration records maintained by the States. A majority of the States have no records of the number of Federal vehicles in the State. A few States have a record of the number of vehicles and exclude them from the regular registration records.
Motor vehicles owned by the State, counties, and local governmental units are excluded from this study in all but six States. In most States special classifications are maintained for these publicly owned vehicles and they are usually subject to special rates or are registered free of charge. However, it is not possible to segregate these vehicles from the privately owned vehicles in Colorado, Kansas, Massachusetts, Michigan, New Hampshire, and Vermont. Consequently, these publicly owned vehicles are included with the privately owned vehicles in the registration records and in the study.

Public Roads Administration table MV-1 for 1939 and the results of the motor-vehicle allocation studies for all available States were used as the basis for the preparation of table 1 showing the distribution of the four types of vehicles by regions and population groups. The registration records, as compiled by the State authorities and submitted to the Public Roads Administration, do not in all cases have the same classification as those used in the motor-vehicle studies. For example, busses and trucks are combined in one classification as commercial vehicles in Ohio and are not segregated in the official State registration records. When the motor-vehicle allocation study was conducted in Ohio for the year 1935 a special analysis of the registration records was made to determine the number of trucks and busses. Since the registration data for the year 1939 do not include a separation of these vehicle types the 1935 motor-vehicle allocation study data were used as the basis for estimating the number of busses included with trucks and other commercial vehicles in Ohio.

Revisions of this type were necessary in only a few instances. In other States, either because motorvehicle allocation data are not available or a separation of trucks and busses is not made in the registration records, a complete segregation of vehicle types is not possible nor is it possible to make an estimate of the number of each type. Consequently, busses have been included with trucks in Delaware, Illinois, and Iowa and are so presented in table 1. The classification "other vehicles" includes all trailers and motorcycles in all cases.

BUS AND TRALLER INFORMATION INCOMPLETE

Because of wide variations in registration practices which affect in particular the registration of busses and trailers, it is difficult to present adequate and significant data concerning these vehicles. Accurate records of the registration of busses are not available for a large number of States. In general, only commercial busses are included in the official registration records supplied by the State authorities but in some instances school busses are included. In some States school busses are classed as publicly owned vehicles despite the fact that they may be privately owned and operated upon a contract basis. In other instances they are considered to be privately owned and subject to the same schedule of fees that the owners of other privately-owned vehicles pay. For these reasons the number of busses registered and the amounts of registration fees paid cannot be considered to be complete or entirely accurate.

Trailer registration regulations vary even more than those for busses. Some States require the registration of all trailers regardless of type, weight, or carrying capacity while others require only the registration of certain types of commercial or freight-carrying trailers. Because of the variations in practice it will be readily seen that the number of trailers reported as registered will not represent the number of trailers actually in existence. For this reason this study, while including all data reported, has placed major emphasis upon passenger cars and trucks for which it is believed adequate and accurate data are available. The operations of such vehicles also represent by far the major portion of traffic movement.

While the official State motor-vehicle registration records provide the data necessary for the preparation of State and regional figures, they do not provide the data relative to the number of vehicles registered in each of the population groups. In a few States records are maintained which would permit the direct tabulation of the number of vehicles owned in a particular city, town, or rural area. This is usually the case where motor-vehicle imposts are returned to the local governmental units on a basis that requires the number of vehicles registered in each local governmental unit to be determined. Since only a few States maintain these records, it was necessary to devise other procedures in order to determine the situs of ownership.

The motor-vehicle questionnaires, previously described, which were mailed to motor-vehicle owners throughout each of the States, were used as a basis for determining the distribution of vehicles by population group. It was necessary to devise a method of correcting the distortion in the returned sample caused by lack of uniform response by residents of the various population groups and the fact that owners of newer vehicles returned a larger proportion of questionnaires than did the owners of older vehicles.

Table 1.-Distribution of vehicles by population groups in $1939{ }^{1}$
PASSENGER CARS

${ }^{1}$ Source: Public Roads Administration table M$\vee-1$, 1939. Planning survey data were used for population group distribution and adjustments in vehicle types.

The proper determination of the distribution of passenger cars by population groups, when the determination is to be made through the use of questionnaires, involves a study of the distribution of year models. The year model distribution, which was obtained for each State by either a complete or partial analysis of the registration records, was used in adjusting the returned sample to correct for the distortion caused by the lack of uniform response.

The basis for determining the number of vehicles of each type registered in each population group in 1939 was provided by the results of the motor-vehicle allocation studies, which were available for all but seven States. The distribution of vehicles by population groups as determined by the motor-vehicle allocation studies was applied directly to the total number of vehicles registered in each State in 1939.
In those States for which results of motor-vehicle allocation studies were not available the distribution of vehicles by population groups was estimated. The
distribution of vehicles in adjoining and nearby States having the same geographic and economic characteristics was used as the basis for making the estimates. Estimates of the vehicle distribution by population groups were made for Connecticut, Delaware, Massachusetts, Mississippi, New Jersey, New York, and Rhode Island.
In addition to the population group distribution a small number of vehicles in each region are designated as "nonresident" vehicles. These are vehicles registered in a State other than that of the residence of the owner. Some States require vehicles entering the State to register while others consider a bona fide registration in another State as meeting the local requirements. It is the practice of some corporations to pay all registration fees for vehicles from the home office of the corporation, which may be located in a State other than the one in which the vehicles are operated. In some States such registrations are considered as nonresident registrations and they are so considered in this study.

MIDDLE STATES HAVE NEARLY ONE-THIRD OF ALL PASSENGER CARS

The distribution of the four types of vehicles by regions and population groups is shown in table 1. The data given in this table for passenger cars and trucks are expressed in percentages in table 2. Passenger cars constitute the major part of the motor-vehicle registration with a total of $26,134,043$, which is 81.8 percent of all vehicles registered. The 4,402,295 trucks constitute 13.8 percent of the total registration. Motor busses, trailers, and motorcycles make up a relatively small proportion of the total registration.

Approximately one-third of all the passenger cars in the United States were registered in the eight States comprising the Middle States region. The fact that the automobile industry is centered in this region is probably an important factor in the relatively high concentration of ownership in this area. The Northeast region ranked second in number of passenger cars with a total of $7,210,609$ registrations. The Northwest region comprising nine States had the lowest total of the six regions with $1,839,440$ passenger cars. Although the Middle States also had the largest registration of trucks, the ratio of passenger cars to trucks was higher than that of any other region. The 1,185, 847 truck registrations accounted for 26.9 percent of the total truck registrations in the country while the passenger car registrations were 31.8 percent of the total. The Northeast region had the second largest truck registration with $1,087,669$ vehicles while the Northwest had the lowest total with 396,925 registrations.
The distribution of motor vehicles, population, and land area of the six regions are compared in table 3. These data are presented graphically in figure 2. The densely populated Northeast region had 26.6 percent of the motor-vehicle registrations and only 5.8 percent of the land area of the country. The Northwest region with a total land area of 818,508 square miles, or 27.5 percent of the total area of the country, had only 7.4 percent of the total number of motor vehicles registered. The three Western regions as a group accounted for 27.0 percent of the motor vehicles registered in 1939 with only 20.1 percent of the population while the Middle States and the two Eastern regions had 73

Figure 2.-Percentage Distribution of Motor Vehicles Registered in 1939 and Population and Land Area as Reported by the 1930 Census.
percent of the vehicles and 79.9 percent of the population. The three Western regions, while having a relatively high number of vehicles when compared with the Middle States and Eastern regions on a population basis have relatively few vehicles when compared with these regions on an area basis. The three Western regions had 61 percent of the land area but only 27 percent of the vehicle registrations.

The relatively high concentration of vehicles in the Northeast is evident in table 4 which shows the number of passenger cars, trucks, and all vehicles per square mile in each of the six regions. The average number of passenger cars per square mile in the Northeast was 41.4 and for the United States was 8.8. The Northwest had only 2.2 passenger cars per square mile of area.

Table 5 shows the ratio of passenger cars to trucks for each region and population group in 1939. The ratio of passenger cars to trucks for the United States was 6.0. There is considerable variation in the ratio throughout the various population groups and regions, ranging from 3.4 in places having a population of less than 1,000 in the Far West and in places having a population of

Table 2.-Percentage distribution of passenger cars and trucks by population groups in 1939
PASSENGER CARS

2,501 to 5,000 in the Southwest region to 10.4 in places having a population of 100,001 to 250,000 in the Far West region. In the Southwest region there was one truck registered for every four passenger cars while in the Middle States there was only one truck for every seven passenger cars. The low ratio of passenger cars to trucks in the unincoporated areas and small incorporated places is probably due to the use of trucks for carrying passengers as well as for general hauling on farms.

Table 3.-Distribution of motor-vehicle registration, population, and land area in the Lnited States

Region	$1939 \begin{aligned} & \text { vehicle regis- } \\ & \text { tration }\end{aligned}$		Population ${ }^{2}$		Land area ${ }^{2}$	
	Number	Percent	Number	Percent	Square miles	Percent
Northeast.	8, 496, 088	26.6	36, 783, 866	30.0	173, 944	5.8
Southeast	4, 712, 265	14.8	27, 280, 103	22.2	534, 548	18.0
Middle States	10, 103, 593	31.6	33, 961, 444	27.7	450, 735	15. 2
Northwest-	2, 357, 340	7.4	7, 384, 497	6.0	818, 508	27.5
Southwest.	2, 509, 182	7.9	9, 079,645	7.4	568, 125	19.1
Far West	3, 747, 323	11.7	8, 285, 491	6.7	427, 916	14.4
United States	31, 925, 791	100.0	122, 775, 046	100.0	2, 973, 776	100.0

${ }^{1}$ Includes all registered motor vehicles, trailers, and motorcycles.
${ }^{2}$ Source: 1930 Census.
Table 4.-Motor vehicles registered per square mile in the United States in 1939

Region		Passenger cars		Trucks		$\begin{aligned} & \text { All } \\ & \text { vehicles } \end{aligned}$	
Northeast Southeast Middle States Northwest Southwest. Far West United States			41.4		6.2		48.8
			7.0		1.5		8.8
			18.4		2.6		22.4
			2.2		. 5		2.9
			3.4		8		4.4
			7.2		1.1		8.8
		8.8		1.6		10.7	
${ }^{1}$ Includes busses, trailers, and motorcyeles.							
Table 5.-Ratio of passenger cars to trucks in 1939, by regions and population groups							
Population group	Region						
	年				的		
Unincorporated areas	5.9	4.5	6.3	3.8	3.5	5.8	5.0
Incorporated places having a population of-							
Less than 1,000	4.8	4.3	5.1	4.6	3.9	3.4	4.6
1,001 to 2,500 \ldots	5.6	4.5	5. 7	4.8	3.5	3.9	4.9
2,501 to $5,000-$	7.4	4. 5	6.5	5. 0	3.4	5.0	5.6
5,001 to 10,000	7.5	4.9	7.0	5.5	4.0	5.2	6.0
10,001 to 25,000	7.5	4.9	7.7	6. 0	4. 1	7.5	6. 6
25,001 to 50,000	8. 4	5. 6	8.2	6. 0	4.5	7.5	7.3
50,001 to 100,000-	6. 4	5.3	9.2	6. 6	5.0	10.0	7.2
100,001 to 250,000	7.0	6.0	8.3	6. 6	5.8	10.4	7.
250,001 to 500,000	7.1	6.1	8.2	7.6	5.6	9.4	7.4
500,001 to 1,000,000.. More than $1,000,000$	6.2 6.6		7.0 9.0			7.2	6.7
More than 1,000,000	6. 6		9.0			9.3	7.7
Total.	6.6	4.8	7.0	4.7	4.0	6.8	6.0

THREE-TENTHS OF ALL VEHICLES OWNED BY RESIDENTS OF UNINCORPORATED PLACES
Of the $31,925,791$ rebicles registered in 1939, persons residing in unincorporated areas owned 9,436,273 or 29.6 percent. Residents of incorporated places having a population of less than 1,000 owned $1,642,706$ vehicles while $1,775,007$ were owned in places having a population of 1,001 to 2,500 . The residents of these three population groups, which include 43.6 percent of
the total population of the country, owned 40.2 percent of the registered vehicles. However, the percentage of vehicles owned in the two smallest classes of incorporated places which include all those places having a population of less than 2,500 persons, exceeds the percentage of population residing in these two groups. Of the total population of the country, 8.1 percent resided in these groups while 10.6 percent of the vehicles were owned by these residents. Table 6 gives a comparison of population and motor-vehicle distribution expressed in percentages for each of the several population groups. The residents of unincorporated areas and cities having a population of more than 500,000 persons own fewer vehicles in proportion to the population in these groups than do residents of incorporated places that have a population of less than 500,000 . A total of $17,848,154$ vehicles were registered by owners residing in incorporated places having a population of less than 500,000 . These latter population groups accounted for 47.5 percent of the population of the United States and 55.9 percent of the vehicles registered.

Table 6.-Comparison of population and motor-vehicle distribution expressed in percentages for the several population groups

Population group	Percentage of population	Percentage of motor vehicles registered				
		Passenger cars	Trucks	Busses	Other vehicles	Total
Unincorporated areas	35.5	$28.7{ }^{*}$	34.0	14.9	32.8	29.6
Incorporated places having a population of-						
Less than 1,000	3.8	4. 8	6.2	3.4	7.8	5.1
1,001 to 2,500	4.3	5. 3	6. 4	3.5	7.4	5.5
2,501 to 5,000	4.1	5.1	5.4	3.3	6.1	5. 2
5,001 to 10,000	4.9	5.8	5. 8	4.3	6.5	5.9
10,001 to 25,000	7.4	8. 6	7.7	9.3	8.0	8.5
25,001 to 50,000	5. 2	6.5	5. 3	9.5	5. 4	6.3
50,001 to 100,000	5.3	6.1	5. 1	7.5	5.5	5.9
100,001 to 250,000	-6.1	6.6	5.5	12.5	5.7	6.4
250,001 to 500,000	6. 4	7.4	5. 9	10.0	4.5	7.1
500,001 to $1,000,000$	4. 7	4.2	3.7	6.8	2.4	4.0
More than 1,000,000	12.3	10.7	8.2	8. 2	7.1	10.2
Nonresident.		. 2	. 8	6.8	. 8	. 3
Total	100.0	100.0	100.0	100.0	100.0	100.0

The number of passenger cars registered per 100 persons living in each of the population groups is shown in table 7. There is considerable range in passenger car ownership per 100 persons in the several regions and population groups. In the Far West in incorporated places having a population of 50,001 to 100,000 there were 53.2 passenger cars per 100 persons while in the unincorporated areas of the Southeast there were only 10.2 cars per 100 persons. The unincorporated areas in the Northeast were above the average of 19.6 for the entire region with 21.7 passenger cars per 100 persons.

The comparatively small number of passenger cars owned per 100 persons in the larger cities is undoubtedly due in part to the extensive and efficient public transportation systems which make it unnecessary for many persons residing in those places to depend upon the automobile for local transportation. Lack of highly developed public transportation facilities in the smaller cities makes the ownership of an automobile almost a necessity under ordinary circumstances. Furthermore, the ownership of vehicles in the larger cities is considerably more expensive than it is in the smaller places due to higher operating costs and costs of storage and parking facilities. ${ }^{4}$ These factors are reflected in the

[^2]lower ratio of passenger cars to population in cities over 500,000.

While the necessity for some means of local transportation is probably greater in the unincorporated areas than in the smaller cities, the low eash income of residents of these areas in many cases precludes the ownership of any kind of a motor vehicle. This is particularly true in the Southeast where in the unincorporated areas there were only 10.2 passenger cars registered per 100 persons and in the Southwest where the number registered per 100 persons was 14.8 . The lack of passenger cars in the unincorporated areas is offset to some extent by a relatively large truck registration in all but the Southeast and Southwest regions.

TAble 7.-Number of passenger cars registered per 100 persons ${ }^{1}$

Population group	Region						
	$\begin{aligned} & \text { 㞱芯 } \\ & \text { Z } \end{aligned}$						
Unincorporated areas	21.7	10.2	22. 2	21.5	14.8	33.5	17.2
Incorporated places having a population of -							
Less than 1,000.	24. 1	18. 1	33.6	27.2	24. 5	45.0	27.4
1,001 to 2,500	25.0	19.0	30.9	27.9	25.7	42.6	26.6
2,501 to 5,000	25.5	19.4	29.8	28.2	26.2	40.9	26.6
5,001 to 10,000	21.6	21.0	27.9	29.7	26.0	39.5	25.4
10,001 to $2.5,000$	21.6	19.6	26. 2	29.7	30.7	43.6	25.0
25,001 to 50,000	25.3	21.8	26. 2	28.4	31.2	38.3	26.4
50,001 to 100,000	19.4	19.7	26.7	28.1	28.0	53.2	24.4
100,001 to 250,000	18.7	21.2	24.7	24.4	27.4	36.0	22.8
250,001 to 500,000 .	21.5	17.7	25.0	30.2	34.8	29.7	24.2
500,001 to 1,000,000	15.5		21. 3			25.9	19.0
More than 1,000,000	14.4		19.9			43.3	18.6
Total.	19.6	13.7	24.4	24.9	21.2	37.2	21.3

- Based upon 1939 passenger car registrations and 1930 population.

Table 8 shows the number of trucks registered per 100 persons in each of the regions and population groups. The use of trucks as passenger vehicles as well as for hauling agricultural products and supplies probably accounts for the relatively high number of trucks owned by residents of rural areas. The incorporated places having a population of less than 10,000 had a relatively high truck registration compared to the larger cities. As in the case of passenger cars, the truck registration in the largest cities was comparatively low. Figure 3 is a graphic representation of the number of passenger cars and trucks registered per 100 persons in each of the population groups in the United States.

From a consideration of these data it is apparent that motor-vehicle ownership is more concentrated in the small and medium size cities than in the rural or unincorporated areas and the largest cities. It appears that increased ownership of vehicles will result in the largest cities only after adequate parking and storage facilities are provided and the convenience of using private vehicles is increased by relieving traffic congestion through improvement of street facilities. The economic status of large numbers of farmers and other residents of rural areas will also have to be changed considerably before any large increase in the number of rurally owned motor vehicles will result.

PASSENGER CARS GROUPED ACCORDING TO YEAR MODEL AND

 AVERAGE AGESince data regarding the distribution of passenger cars by year models in most States were obtained only for the year during which the motor-vehicle study was

Figure 3.-Truck and Passenger-car Registrations Per 100 Persons in 1939.
conducted, and since these data cannot be combined satisfactorily for average age computations for regions or on a country-wide basis, they are shown for individual States and for the period of the study only. Because the registration years vary considerably in the several States and because the motor-vehicle allocation studies were made for various periods, it is not considered practicable to present combined data for a particular period. Tabulations have been prepared which indicate the variation in the average age of passenger cars between rural areas and incorporated places in a number of States. In the case of two States, available data make possible the presentation of average age data for each of 3 years and for each of the population groups.

Table 8.-Number of trucks registered per 100 persons ${ }^{1}$

${ }^{1}$ Based upon 1939 truck registrations and 1930 population
The average age of passenger cars registered during the year on which the motor-vehicle allocation studies were based in each of the States has been computed from the available year-model data. The following paragraphs describe the procedure used in these computations.

The first step in the computation of the average age of passenger cars involved the determination of the age of vehicles that had been in service for a period of less than 1 year. During the period in which the motorvehicle allocation studies were being conducted most
of the manufacturers placed their new models on sale carly in November. In more recent years the new models have in general been released during September and October. The count of the number of passenger cars of each year model in a State was made in most instances after the close of the registration year. Since the new car models were placed on sale during the fall season a few new models were usually registered in the calendar year preceding the year of the model. For example, a few 1939 model cars are included in the 1938 registrations of all States registering on a calendar-year basis or some period approximately coincident with the calendar year. In most cases new car registrations reported in November and December of each year represented sales of the new models for the next year. In order to include these cars in the average age calculations, vehicles registered in November were considered as having been in service an average of 2 months and vehicles registered in December ashaving been in service an average of 1 month on December 31.

In calculating the average age of vehicles of the same year model as the registration year in which the counts were made, the number of new car registrations effected during the year November 1 to October 31 was determined. Practically all of the new car sales for a particular year take place during the period from November of the year preceding the year of the model to the following October. For example, the major part of the 1938 models was sold during the last 2 months in 1937 and the first 10 months of 1938. Therefore, to compute the average age of the most recent year model the new car registrations in each month were tabulated. New vehicles registered in November and December were considered to have been in operation 12 months and 11 months, respectively, on the following October 31. Cars sold in each successive month were in service 1 month less. Vehicles sold in October were considered to have been in service for 1 month. The number of service months was obtained by multiplying the number of registrations in the month by the number of months in operation. The average age was determined by dividing the service months by the total number of new car registrations during the period. Adjustments to the beginning of the registration period were made by adding the difference in months between October 31 and the beginning of the registration period to the average age of the latest year models.

After determining the average age of vehicles in operation less than 1 year the average age of all passenger cars registered in each State was obtained by dividing the number of service years by the total registration. Automobiles of the year model preceding the latest year reported were considered to be 1 year older than the average age of the latest year model. Similarly, cars of earlier years were considered to be 2, 3 , and 4 years older according to the year model of the vehicle.

Since many of the States did not determine the number of passenger cars of each year model older than 1925 a method was devised for apportioning these older vehicles to the several year model groups prior to the oldest year available. The number of 1924 and earlier year models registered in 1936 and subsequent years was so small that the omission of these vehicles from the calculations would have had but slight effect upon the results. Since a practical means of making the apportionment was available, they were included in the calculations.

AVERAGE AGE OF PASSENGER CARS IN 39 STATES VARIED FROM 4.49 TO 7.29 YEARS

A complete enumeration of all passenger cars registered in Connecticut by year models was made for the year 1939.5 The number of vehicles of each model from 1904 to 1939 was determined in this study. Similar information obtained from Virginia, Missouri, Nebraska, and Alabama provided the basis for construction of a table of the number of cars remaining in service after attaining the age of 12 years. This table was used in determining the number of cars of each year model older than 12 years for each of the States. Of the total number of vehicles registered which were 12 years or older, approximately 1 percent were 19 years or older. These vehicles were grouped and were found to average 22.10 years of age. In distributing vehicles to the various year model groups older than 19 years this small fraction of 1 percent of the total registration was considered to have an average age of 22.10 years.

The average age of passenger cars in each of 39 States is shown in table 9 as of the date indicated. The dates selected in the tabulation were controlled by the time covered by the motor vehicle allocation study and the registration year. Of the States represented in the tabulation, Massachusetts with 4.49 years had the lowest average age for passenger cars. The highest average age was found in South Dakota where the automobiles had an average age of 7.29 years at the end of March 1938. In 26 of the 39 States the average age of passenger cars was greater than 5 years and less than 6 years. In only 5 States was the average age less than 5 years and in 8 States the average exceeded 6 years. With the exception of Louisiana all of the States whose passenger cars averaged less than 5 years were situated in the East and Northeastern part of the United States.

The average age of passenger cars owned by residents of unincorporated areas is considerably higher than that of automobiles owned in the incorporated places. The average age of passenger cars owned in unincorporated areas in the 15 States shown in table 10 is without exception higher than the average age of vehicles owned by residents of incorporated places. In 4 of the 15 States the difference in average age is less than 1 year; in 8 States the difference is between 1 and 2 years; and in Arkansas, Minnesota, and North Dakota the difference between average ages of vehicles owned in the cities and unincorporated areas is in excess of 2 years. Registration records indicate that the purchase of used cars by rural residents, rather than the long life of automobiles purchased new by that group, is the chief factor in the differences in average age of vehicles in the rural areas and incorporated places.

AVERAGE AGE OF ALABAMA AND ARKANSAS PASSENGER CARS GIVEN BY POPULATION GROUP

The motor-vehicle registration records for the registration years 1936, 1937, and 1938, for Alabama and Arkansas, have been tabulated on the basis of the number of year models of each type of vehicle registered in each of the several population groups in these States. These data have been used to compute the average age of passenger cars owned by residents of each population group for each of the three years.

[^3]

Figure 4.-Registration of Passenger Cars by Year Models in the Unincorporated Areas in Alabama in the Registration Years 1936, 1937, and 1938.
Table 9.-Average age of passenger cars registered on dates indicated

Table 11 gives the average age of passenger cars for each population group in Alabama. The average age of automobiles owned by persons living in the unincorporated areas was approximately 1 year higher than the average of all vehicles in the State and slightly more than 2 years higher than automobiles owned in the incorporated places. The average age of the passenger cars in unincorporated areas remained practically unchanged during 1936 and 1937 and then increased from 6.56 in 1937 to 6.64 in 1938. The effect of the large sale of 1937 cars is noticeable in the reduction in average age in 1937.

Figure 5.-Registration of Passenger Cars by Year Models in the Incorporated Places in Alabama in the Registration Years 1936, 1937, and 1938.

Table 10.-Average age of passenger cars registered in unincorporated areas and in incorporated places on dates indicated

State	Date	Unincorporated areas	Incorporated places	All areas
Alabama	Sepi. 30, 1936	Years 6. 54	Years 4. 63	Years $\text { 5. } 53$
Arkansas	Dec. 31, 1936	7. 10	4. 56	5. 86
Florids.	-...do.	6. 10	5. 09	5. 36
Louisiana	do	5. 48	4. 50	4.84
Maryland	Mar. 31, 1937	5.11	4. 41	4. 70
Minnesota	Dec. 31, 1936	7. 29	5. 23	6. 22
Missouri		7. 46	5. 56	6. 30
North Dakota	do	7.71	5. 54	6. 83
Oklahoma		6.63	5. 21	5. 72
Oregon.	Oct. 31, 1936	7.32	5. 69	B. 30
Utah.	- . do.-....	6. 04	5. 39	5. 55
Vermont	Mar. 31, 1937	6. 25	4.92	5. 60
Virginiado.	5. 21	4.15	4. 85
Washington	Oct. 31, 1937	7.37	6. 05	6. 52
W yoming . .	Oct. 31, 1936	5. 64	4.66	5. 06

Table 11.-Average age of passenger cars in each population group in Alabama on September 80 of the registration years 1936, 1937, and 1938

The shift of the older used cars from the cities to the rural areas is readily apparent when the data shown in figures 4 and 5 are compared. Figure 4 shows the number of passenger cars of each year model registered by residents of the unincorporated areas of Alabama for each of the three registration years 1936, 1937, and 1938.

Figure 5 shows comparable data for the incorporated places in Alabama. The predominance of 1929-year models in the rural areas and the slow rate at which they were being retired is apparent in figure 4.

Figure 6.-Percentage of Each Year Model of Passenger Cars Registered in the Unincorporated and Incorporated Areas of Alabama in 1936.

Starting with the 1931 models there was an increase in the number of older model cars registered in each of the three registration years. For example, there were 6,855 automobiles of the 1931 model registered in 1936. In 1937 this number had increased to 7,954 and in 1938 there were 8,171 of the 1931 models registered. There were similar increases for each subsequent year model for each of the three registration years. These increases in older car registrations were due to the shift of used cars from the cities to rural areas and the importation of used cars from other States.

In figure 5, which shows the number of vehicles registered in incorporated places, it is apparent that som? of the older year models disappeared with each successive registration year with the exception of the latest model available during the registration year. The increase in the number of registrations of the latest model available is accounted for by sales of new vehicles after the close of the registration year on September 30.

In 1938, 10 years after the 1929-model automobile first became available, there were more cars of this model registered by residents of unincorporated areas than of any other year model. In the cities the registration of 1929 -model cars was still large but they were disappearing at a rapid rate and in 1938 there were more cars of the 1934 and subsequent models registered than there were 1929 models. The percentage of each year model registered in the unincorporated and incorporated areas of Alabama in 1936 is presented graphically in figure 6. The predominance of newer cars in the cities is evidenced by the data shown in this graph.
Characteristics practically identical with the Alabama data are found in a similar presentation of Arkansas registration data for the registration years 1936, 1937, and 1938. There was, however, a general in-

Figure 7.--Registration of Passenger Cars by Year Models in the Unincorporated Areas in Arkansas in the Registration Years 1936, 1937, and 1938.

Figure 8.-Registration of Passenger Cars by Year Models in the Incorporated Places in Arkansas in the Registration Years 1936, 1937, and 1938.
crease in the average age of cars in Arkansas during the 3 -year period. As in Alabama the average age of cars owned in the unincorporated areas was more than 2 years higher than the average age of cars owned in incorporated places. Table 12 gives the average age of Arkansas passenger cars for each of the registration years 1936, 1937, and 1938 and for each of the population groups in the State. Figures 7 and 8 show the number of vehicles of each year model registered in each of the three registration years. Here, as in Alabama, the preponderance of 1929 models is particularly outstanding in both the cities and rural areas. In 1938 there were still two and one-half times as many 1929 models registered as there were 1937 models. At the rate that used cars are being shifted from the cities to the rural areas it appears that the average age of cars owned in the rural areas in Arkansas will not be reduced an appreciable amount during the next several years.

MOTOR-VEHICLE REGISTRATION FEES CLASSIFIED BY POPULATION GROUPS

Collections of motor-vehicle registration fees totaled $\$ 353,533,000$ in $1939, \$ 237,612,000$ of which was for passenger cars and $\$ 98,666,000$ for trucks. Bus registration fees totaled $\$ 6,032,000$ and owners of trailers and motorcycles paid $\$ 11,223,000$ in registration fees. Table 13 shows the amounts of registration fees paid by owners of each of the four types of vehicles in each of

Table 12.-Average age of passenger cars in each population group in Arkansas on December 31 of the registration years 1996, 1937, and 1998

P'opulation group	Registration year		
	1936	1937	1938
Unincorporated areas	$\begin{aligned} & \text { Years } \\ & \frac{7}{1} .10 \end{aligned}$	$\begin{aligned} & \text { Years } \\ & 7.41 \end{aligned}$	Years 7.57
Incorporated places having a population of-			
Less than 1,000.	5. 36	5. 29	5. 36
	4. 89	4. 78	5. 01
5, ${ }^{2,501-5,1014.000}$).	4.45	4. 38	4. 54
5,001-10,000 $11,001-25,000$	4. 33 4.37	4. 31	4. 59
Fort Smith (31,429$)$	4.51	4. 53	4. 4.5 4.65
Little Rock (81,679).	4. 20	4.28	4. 24
All incorporated plares.	4. 56	4. 55	4. 65
All propulation groups	5.86	5. 414	6. 0 ?

the regions and population groups. These data are expressed in percentages in table 14 for passenger cars and trucks.

A comparison of the data shown in tables 2 and 14 indicates that the proportion of passenger cars registered
in the unincorporated areas exceeds the proportion of registration fees paid by residents of these areas in all of the regions with the exeeption of the Northenst. The unincorporated areas of all regions combined accounted for 2s. 7 pereent of the passenger-car registrations but residents of these areas paid only 26.4 pereent of the total registration fees. Residents of incorporated places with populations of less than $1,000,000$ paid registration fees which were proportional, with only slight variations, to the number of vehiches registereid in cach population group. The residents of cities having a population of more than $1.000,000$ owned 10.7 pereent of the passenger cars in the country and paid 12.9 percent of the total reqistration fees.

The net weight and horsepower of vehicles are the two bases which are predominant in the computation of license fees for passenger cars. Since a great many older cars, a large portion of which were light in weight, and a large portion of the lighter weight cars of the later models are registered in the unincorporated areas, it is to be expected that these factors would result in a low average registration fee in these areas and a low

Table 13.-Total motor-vehicle registration fees paid in 1939, by population groups ${ }^{1}$
PASSENGER CARS

Region	Unincorporated areas	Incorporated places having a population of -											All places	$\left\lvert\, \begin{gathered} \text { Non- } \\ \text { resident } \end{gathered}\right.$	Total
		$\begin{gathered} 1,000 \\ \text { ur } \\ \text { less } \end{gathered}$	$\begin{aligned} & 1,001 \\ & \text { to } \\ & 2,500 \end{aligned}$	$\begin{aligned} & 2,501 \\ & \text { to } \\ & 5,000 \end{aligned}$	$\begin{gathered} 5,001 \\ t 0 \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \\ \text { to } \\ 25,000 \end{gathered}$	$\begin{gathered} 25,001 \\ \text { to } \\ 50,000 \end{gathered}$	$\begin{gathered} 50,001 \\ \text { to } \\ 100,000 \end{gathered}$	$\begin{gathered} 100,001 \\ \text { to } \\ 250,000 \end{gathered}$	$\begin{gathered} 250,001 \\ t 0 \\ 500,000 \end{gathered}$	$\begin{gathered} 500.001 \\ t 0 \\ 1,000,000 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { More } \\ \text { than } \\ 1,000,000 \end{gathered}\right.$			
Northeast	\$1.000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$, 1000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000
Southeast	14, 183	1,583	, 558	, 16.5	4, 408	8, 308	, 817	4,939	5, 130	3, 171			71, 240		77, 2xn
Middle States	20, 016	5, 623	4, 703	4, 107	4, 516	6,025	5,533	5, 301	3, 745	6,665	5. 272	9,814	81, 320	89	81, 409
Northwest	3,907	1,160	877	573	703	1,161	469	262	717	458			10,287	10	10, 297
Southwest	5,510	578	1,069	1,022	1,133	1,380	913	750	2,0109	1,983			16, 347	75	16, 422
Far West	4,690	320	607	814	1. 166	1,687	1,092	1,624	1,072	1,426	1,181	3,845	19,524	32	19,556
United States	62, 834	11,225	12,760	12,524	13,816	20,942	15, 654	15, 244	15,006	16,314	10,304	30,640	237, 263	349	237, 612

TRUCKS

BUSSES

Northeast Southeast Middle States Northwest. Southwest Far West	$\begin{array}{r} 33 \\ 93 \\ 51 \\ 21 \\ 6 \\ 30 \end{array}$	$\begin{array}{r} 29 \\ 27 \\ 16 \\ 7 \\ 1 \\ 5 \end{array}$	$\begin{array}{r} 61 \\ 18 \\ 15 \\ 6 \\ 1 \\ 8 \end{array}$	$\begin{array}{r} 66 \\ 21 \\ 21 \\ 4 \\ 15 \\ 12 \end{array}$	$\begin{aligned} & 90 \\ & 34 \\ & 39 \\ & 49 \\ & 45 \\ & 15 \end{aligned}$	$\begin{array}{r} 253 \\ 85 \\ 37 \\ 21 \\ 23 \\ 22 \end{array}$	$\begin{array}{r} 432 \\ 83 \\ 102 \\ 5 \\ 34 \\ 18 \end{array}$	$\begin{array}{r} 149 \\ 147 \\ 77 \\ 1 \\ 10 \\ 16 \end{array}$	$\begin{array}{r} 350 \\ 193 \\ 81 \\ 89 \\ 39 \\ 146 \\ 37 \end{array}$	$\begin{array}{r} 117 \\ 188 \\ 324 \\ 5 \\ 57 \\ 68 \\ 68 \end{array}$	104 218 99	$\begin{array}{r}903 \\ 68 \\ \hline 107\end{array}$	$\begin{array}{r} 2,587 \\ 889 \\ 1.039 \\ 113 \\ 308 \\ 434 \end{array}$	$\begin{array}{r} 335 \\ 101 \\ 136 \\ 35 \\ 54 \\ 1 \end{array}$	2,922 9991 1,175 148 $3+12$ 435
United States	234	85	109	139	187	411	674	400	846	756	421	1,078	5,370	662	f, 032

OTHER VEHICLES

[^4]Table 14.-Percentage distribution of passenger-car and truck registration fees paid in 1939, by population groups
PASSENGER CARS

proportion of the total registration fees compared to the number of vehicles registered. The relatively high average registration fees paid by owners of cars in the largest cities and the high proportion of registration fees compared to the proportion of vehicles registered are caused by the fact that a large portion of the newer and heavier vehicles are owned in these cities.

Characteristics similar to those for passenger cars are noted in the distribution of trucks and the corresponding payments of truck registration fees. However, there is a more marked difference between the proportion of trucks registered in the unincorporated areas and the proportion of registration fees paid by truck owners resident in these areas. The unincorporated areas account for 34.0 percent of the registrations and only 24.9 percent of the fees paid. The use of light pick-up trucks serving the dual purpose of passenger car and truck on farms is undoubtedly the major factor in the low average fee paid and the low proportion of fees compared to the number of truck registrations. While only 8.2 percent of all trucks are registered by owners residing in cities over $1,000,000$ population, registration fees for these trucks are 13.7 percent of the total. The relatively high average truck registration fees and the consequently greater proportion of fees paid for trucks in the larger cities is due to the number of heavy, freight-carrying vehicles registered by the trucking companies in these cities.

Residents of unincorporated areas paid a total of $\$ 62,834,000$ in registration fees on passenger cars and $\$ 24,562,000$ on trucks. Since few busses are registered in unincorporated areas the fees paid on these vehicles by residents of unincorporated areas are a very small percentage of the total collected. Fees paid on motorcycles and trailers owned in unincorporated areas totaled $\$ 2,442,000$. These amounts with the exception of the bus registration fees exceeded the payments made by residents of any other population group. The motor-vehicle owners resident in cities having a population of more than $1,000,000$ were the second largest contributors of registration fees for all types of vehicles. Total collections from this population group were $\$ 46,528,000$.

The average registration fees paid by owners of the four types of vehicles in each of the regions and popu-
lation groups are shown in table 15 . The averages shown in this table for passenger cars and trucks are based upon complete data and they are considered to be the most accurate obtainable. Since the bus and "other" vehicle data are not as complete as may be desired, the averages for these vehicles are not as accurate as those shown for passenger cars and trucks. Lack of data and the fact that the data for the various States are not entirely comparable make it difficult to present significant average figures for busses and "other" vehicles. The averages shown are based upon the best available data.

NORTHEAST REGION HAD HIGHEST AVERAGE REGISTRATION FEES

 FOR PASSENGER CARS AND TRUCKSThe average passenger-car registration fee in the United States in 1939 was $\$ 9.09$ and the average truck registration fee was $\$ 22.41$. The owners of busses paid an average registration fee of $\$ 81.31$ per vehicle. Pas-senger-car and truck owners residing in the Northeast region paid a higher average registration fee on their passenger cars and trucks than residents of the other five regions. The range of average registration fees for passenger cars was from $\$ 5.60$ in the Northwest region to $\$ 10.72$ in the Northeast. Average truck registration fees ranged from $\$ 11.08$ in the Northwest to $\$ 29.61$ in the Northeast.

The average registration fees paid by nonresident owners of passenger cars were slightly higher than the average paid by residents in all regions except in the Southwest and Far West. Nonresident owners of trucks and busses paid average registration fees which ranged from one and four-tenths to four times as much as the average fees paid by resident owners, except in the Far West region where average fees paid by nonresident owners of busses were only one-third those paid by residents.

Passenger-car owners living in cities having a population of more than $1,000,000$ paid the highest average registration fees of any population group while the residents of unincorporated areas paid the lowest average registration fees. The highest average fee for passenger cars, which was $\$ 13.28$, was paid by residents of cities having a population of more than $1,000,000$ in the Northeast region while the lowest average fee of $\$ 4.80$

Table 15.- Average vehicle registration fee paid in 1939, by population groups
PASSENGER CARS

Region	Unin-corporater areas	Incorporated places having a population of-											$\begin{gathered} 111 \\ \text { places } \end{gathered}$	$\begin{aligned} & \text { Non- } \\ & \text { resident } \end{aligned}$	Total
		$\begin{gathered} 1,000 \\ \text { or } \\ \text { less } \end{gathered}$	$\begin{gathered} 1,001 \\ \text { to } \\ 2,500 \end{gathered}$	$\begin{gathered} 2,501 \\ \text { to } \\ 5,000 \end{gathered}$	$\begin{gathered} 5,001 \\ \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \\ \text { to } \\ 25,000 \end{gathered}$	$\begin{gathered} \begin{array}{c} 5, ~ n 01 \\ t .0 \\ 50,000 \end{array} \end{gathered}$	$\begin{gathered} 50, \text { no1 } \\ \text { to } \\ 100,000 \end{gathered}$		$\begin{gathered} 250,001 \\ 10 \\ 500,000 \end{gathered}$	$\begin{gathered} 500,0,1 \\ \text { to } \\ 1,000,000 \end{gathered}$	$\begin{aligned} & \text { More } \\ & \text { than } \\ & 1,000, \text { th10 } \end{aligned}$			
Northeast	\$10.87	\$11. 28	\$11. 26	\$10. 77	\$10. 24	\$10. 28	\$9. 54	\$10. 39	\$9.12	89.20	\$8. 78	\$13. 28	\$10.72	\$14. 73	10. 72
Southeast	8.21	8. 40	8.76	9.00	9.00	9. 14	9.56	9. 61	10. 13	7.91			8. 6.9	11.55	¢. 6.9
Middle States.	9. 15	9.95	9. 93	10. 26	9. 82	10. 10	10.0.5	10. 37	9. 6.5	9.57	10. 76	9. 99	9. 80	10. $\overline{17}$	9.4
Northwest.	5. 21	5. 89	5. 78	5. 82	6. 16	6. 55	7. 16	4. 91	5. 110	5. 28			5. 60	6. 29	5. (iil
southwest	7. 73	7.87	8. 42	8.91	7. 98	9. 29	8. 24	10.02	8.89	10. 31			¢. 51	5.91	8. 49
Far West	5. 98	4. 80	5. 92	6. 28	6. 76	6. 33	6. 67	7. 18	5. 82	5. 04	7. 17	7. 17	6. 34	4.94	6. 34
United States	8. 38	8.88	9. 16	9.38	9.03	9. 27	9.25	9.61	8. 70	8.47	9.42	10. 9.5	9. 69	8.62	9. 19

Northeast	26. 00	24. 29	26. 15	26. 35	27. 69	27.25	25. 96	32. 52	2 x .02	29. 22	22.69	41.42	29. 49	62. 52	29. 61
Southeast	15.44	19.51	20. 13	20. 43	22. 26	21. 50	25. 27	24.30	27. 616	19.76			18. 82	35. 47	19.14
Middle States	18. 62	22.61	23. 45	23. 44	24.81	26.97	28.62	28. 5.9	30. 72	29.38	30.61	39.113	25.45	46. 16	25. 63
Northwest	8.95	12. 67	12.74	15. 80	12. 3.5	12. 86	11. 56	10. 78	12.55	10. 61			10. 8.3	42.62	11. $11 \times$
Southwest	13. 46	19.08	22. 15	23. 93	24.05	24.56	23. 53	21.88	23. 36	33.31			19. 73	32.95	210. 113
Far West	12. 63	13. 85	14.42	14. 13	14.81	14.98	15. 32	15. 19	15. 22	19. 18	21.84	19.03	15. 31	24.38	15. 35
United States	16. 40	19.89	21.21	21.93	22. 60	23. 47	24. 69	26. 54	25. 42	26. 22	25. 97	37.38	22. 28	39. 15	22.41

Northeast	57. 93	67.97	62.41	69. 42	64.02	75. 46	98.52	74. 5.5	81.50	$4 \times .24$	89.54	221.39	99. 39	135. 81	102.6 fif
Southeast	12. 86	21.45	19.70	34.86	53.27	48. 66	97.92	67.71	174.01	10t. 19			45. 24	82.36	50.) 41
Middle States	55. 31	49.86	77. 62	106. 30	123.25	114. 73	153.07	141.71	174.25	218.09	149.78	211.80	145.65	249.24	153.04
Northwest.	19.14	20.01	29. 25	27.94	26. 59	53.01	26. 16	17.51	67. 18	20.45			33. 14	91. 23	39.104
Southwest	20. 27	33. 44	36.83	85.56	62.60	49.78	65. 75	57. 63	68.80	108.17			¢7. 23	129.538	72. 411
Far West	32. 19	34.72	31.37	39.09	29.94	34.61	40. 50	25. 97	51. 32	73.17	40. 13	65. 05	4.5. 57	14.05	45.36
United States.	21. 11	33. 95	41.96	57.68	59.01	63.78	9.5 .54	71.95	91.04	101.83	82.89	178.25	77.72	130. 22	81.31

Northeast	11.96	8. 89	9. 6.5	9.9.5	9. 79	9.71	9.87	13. 06	11.23	20. 8.5	14.79	11.46	11.47	61.12	11. 14
Southeast	9.31	12.37	16. 17	19.75	21.23	20. 07	19.22	21.76	25. 78	29.87			15. 11	58. 52	16. 18
Middle States	4.02	3.36	4. 09	4.59	5. 96	6. 7.5	7. 30	6. 34	7. 42	15. 48	24. 53	16.30	6. 73	13.12	6. ix
Northwest	2.22	3. 28	3. 48	3. 5.5	3. 12	4. 13	4. 29	3.86	4. 70	14. 48			2.87	35. 74	2.97
Southwest	9.43	11.40	11. 34	10. 54	13. 24	12. 51	12. 60	7. 18	12.83	13. 06			11.08	30. 70	11.49
Far West	5. 76	6. 099	6. 75	6. 24	5.77	7.21	6. 42	6. 8.5	9.41	12. 60	12.02	13. 48	7. 68	6. 18	7. is
United States.	5. 66	5.41	6. 95	7. 81	8. 03	8. 82	8.98	9.09	10. 60	16. 27	18.98	13.85	8.32	34. 67	X. 53

Northeast	13. 06	13.48	13. 53	12. 69	12. 39	12.45	11.81	13. 54	11.94	11.99	10. 95	17.42	13. 40	65. 61	13. 46
Southeast	9.54	10. 67	11. 10	11.47	11.64	11.71	12.47	12.59	14.11	10. 37			10. 73	32.90	10. 84
Middle States	10. 03	11.34	11.35	11.53	11. 3.5	11.77	11.95	11.94	11.75	12. 26	13. 88	13. 15	11.55	27.s7	11.57
Northwest.-	5. 74	6. 96	6. 86	7. 3.5	6. 97	7.41	7.77	5. 64	6. 17	6. 00			6. 38	35. 32	6. 44
Southwest	9.02	10. 19	11.45	12.31	11.32	12.40	11.26	11.93	11.53	13. 97			10. 8.5	21.05	10.95)
Far West	6. 92	6. 84	7.61	7.54	7.91	7.39	7. 68	7.90	6. 91	6. 77	9. 45	8. 6 6	7. 59	9. 43	7.59
United States	9. 55	10. 53	11.00	11.18	10.92	11.18	11. 33	11.76	11. 12	11.04	12. 03	14.28	11. 02	30. 16	11. 177

was paid by residents of incorporated places having a population of less than 1,000 in the Far West region. Residents of unincorporated areas generally paid lower average registration fees for passenger cars in all regions than did the residents of the incorporated cities and towns.

Weight and horsepower of vehicles are the dominant factors in determining the amount of ammal registration fees paid by automobile owners. A large proportion of the older vehicles registered in rural areas are comparatively light in weight and low in horsepower. These factors probably account for the difference in the average fees paid in the rural and urban areas. Another important factor is that the age of the vehicle has a direct effect upon the amount of license fee charged in nine States. The difference in age of cars owned in cities and those owned in the rural areas is sufficient to produce a significant difference in the average fee paid.

The comparatively low registration fee for passenger cars in Massachusetts and in the District of Columbia
exerts considerable influence on the averages for the Northeast region. The several large cities in Massachusetts with populations in excess of 50,000 is the dominating influence which accounts for the low average fees in these places compared to the smaller cities and unincorporated areas in this region.

AVERAGE MOTOR-FUEL TAX ABOUT TWICE AVERAGE REGISTRATION FEE
Truck owners residing in unincorporated areas paid the lowest registration fee for this type of wehicle, the average being $\$ 16.40$. The fact that special registration fee schedules are in effect for farm trueks in 17 States probably accounts for this low average fee in comparison with the higher fees paid by owners resident in the cities. The prevalence of light pick-up trucks which are used by farmers for both passenger and hauling service and which usually require a lower registration fee than the heavier trucks found in cities is another reason for the low average truck fee paid by residents of unincorporated areas.

Perhaps the most outstanding fact about motor-fuel tax collections is their relatively large amount as compared with registration fee reccipts. A comparison of table 16 with table 13 indicates that in general the amount of motor-fucl tax collections is about twice the amount of registration fee receipts, both in total and for individual population groups. A similar comparison of table 17 with table 15 indicates that in general the amount of the average motor-fuel tax payment is about twice the amount of the average registration fee payment, in any or all population groups. For cither the total or average amounts the relative differences are more pronounced in the case of passenger cars and less noticeable in the case of trucks. In the case of passenger cars, for example, total or average motor-fuel tax receipts for all population groups are more than double the corresponding total or average motor-vehicle registration fee receipts, and the same condition obtains in each of the individual population groups except one-incorporated places of more than $1,000,000$ persons. In the case of trucks, however, total or average motor-fuel tax receipts for all population groups are consistently somewhat less than double the amount of corresponding total or average motor-vehicle registration fee receipts.

The relations existing between motor-fuel tax receipts and motor-vchicle registration fee receipts in the indi-
vidual regions, although showing the same general tendencies, vary considerably from the relations which exist for the United States as a whole. For passenger cars in the Northeast, for example, total or average motor-fuel tax receipts are less than double the amount of corresponding total or average motor-vehicle registration fee receipts, in all except two of the population groups; while in the Southeast, total or average motorfuel tax receipts are more than three times the amount of corresponding total or average motor-vehicle registration fee receipts in all population groups. For trucks in the Northeast, total or average motor-fuel tax receipts exceed corresponding total or average motor-vehicle registration fee receipts only slightly in a majority of the population groups, and in incorporated places of more than $1,000,000$ persons are less than the corresponding total or average registration fee receipts. In the Southeast, however, total or average motor-fuel tax receipts for trucks are in all population groups about three times the amount of corresponding total or average motor-vehicle registration fee receipts.

Table 18 shows for the year 1939 net motor-fuel tax collections in the United States according to the several types of use on account of which the tax accrues. The primary distinction is between highway and nonhighway use, and of the $\$ 816,433,000$ total net taxes collected, $\$ 804,059,000$ or 98.5 percent was collected on

Table 16.-Total State motor-fuel taxes paid for motor vehicle use in 1939, by population groups ${ }^{1}$
PASSENGER CARS

Table 17.- Average State motor-fuel taxes paid in 1939, by population groups
PASSENGER CARS

Region	Unincorporated areas	Incorporated places having a population of-											All places	$\begin{aligned} & \text { Non- } \\ & \text { resident } \end{aligned}$	Total
		$\begin{gathered} 1,000 \\ \text { or } \\ \text { less } \end{gathered}$	$\begin{aligned} & 1,001 \\ & \text { to } \\ & 2,500 \end{aligned}$	$\begin{aligned} & 2,501 \\ & \text { to } \\ & 5,000 \end{aligned}$	$\begin{gathered} 5,001 \\ \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \\ \text { to } \\ 25,000 \end{gathered}$	$\begin{gathered} 25,001 \\ \text { to } \\ 50,000 \end{gathered}$	$\begin{aligned} & 50,001 \\ & \text { to } \\ & 100,000 \end{aligned}$	$\begin{gathered} 100,001 \\ \text { to } \\ 250,000 \end{gathered}$	$\begin{gathered} 250,001 \\ \text { to } \\ 500,000 \end{gathered}$	$\begin{gathered} 500,001 \\ \text { to } \\ 1,000,000 \end{gathered}$	$\begin{gathered} \text { More } \\ \text { Than } \\ 1,000,000 \end{gathered}$			
Northeast Southeast Middle States Northwest Southwest Far West	\$17. 52	\$18. 52	\$18.71	\$19. 55	\$19.40	\$20. 35	\$18.85	\$19.54	\$18.48	\$14.81	\$22.09	\$21. 46	\$19. 28	\$17. 17	
	25. 68	33. 24	33. 22	34.69	33. 47	34.78	33.84	34.06	40.60	33.89			30. 52	29.85	30. 52
	14.52	16. 03	17.18	17.86	18.60	19.12	18.86	18. 80	20.85	23.07	20.75	19.07	17.96	18.30	17.97
	14. 66	16. 39	17. 91	17.85	18. 24	18.57	20.15	20.62	20.11	19.75			16. 92	21. 87	16. 92
	18. 99	21.74	23.57	24.29	23. 27	26. 25	26. 06	23.67	24. 67	27. 60			22.71	20.33	22.69
	16. 95	18. 28	17. 62	17. 21	16.85	18.00	17.60	16. 61	18.79	22.50	15.30	17.84	17.79	20.16	17.80
United Staus	18. 32	19.45	20.78	21.42	21.08	21. 66	20.97	21.37	22.81	23.15	20.47	19.93	20.39	21.67	20. 39
TRUCKS															
Northeast Southeast. Middle States Northwest Southwest Far West	\$27. 26	\$30. 79	\$30.88	\$32. 30	\$33. 27	\$34. 17	\$33. 59	\$39.01	\$34.77	\$29.66	\$51. 16	\$40. 59	\$34. 67	\$29. 52	\$34.65
	45. 91	65.65	66.45	68.93	64. 64	73.30	72. 04	6.5. 16	90. 56	55. 48			57. 48	60.23	57. 52
	20.97	29.37	30.31	32. 26	34.83	36. 68	40. 57	42.88	50. 26	45.08	37.02	54.88	33. 94	37. 09	33.90
	20. 51	34. 48	39. 29	39.49	38. 72	45. 18	36. 89	38.89	36. 86	36.87			29. 50	33. 27	29.5.3
	23. 59	34.34	35. 60	39.91	37.98	40.81	46. 72	41.87	33.67	56.08			33.39	29. 35	33. 30
	25. 30	32.07	32.30	32. 20	31. 20	34. 16	33. 34	31.98	40.78	46. 43	36.47	36.38	32. 28	30.62	32. 27
United States	29.03	36. 76	38.65	40.93	39.76	42.54	42. 88	44.89	46. 68	44.83	43.03	44. 23	37.71	39.98	37.73
BUSSES															
Northeast	\$114.92	\$147.47	\$148. 18	\$137. 18	\$133. 33	\$194. 21	\$207. 92	\$231.40	\$245. 51	\$185. 78	\$257. 76	\$294. 78	\$216. 01	\$192. 37	\$213.98
Southeast	92.96	96. 46	94. 46	146. 94	246. 06	370.86	426. 33	342. 34	536. 14	206.86			209.68	285.32	214.39
Middle States	53.52	81.05	136. 78	170.18	214.63	189.06	248.88	282.26	209.37	264. 18	228. 59	229. 54	204.95	294.14	211.31
Northwest	159. 62	74.44	114.48	86. 12	203. 94	291. 72	232.12	321.74	337.35	274. 56			207. 63	245. 40	211.46
Southwest	268.78	96. 67	132.80	244.39	276. 34	270.76	318.57	257.94	383.14	389. 59			338.58	209.67	327.89
Far West	74. 03	152.78	145. 10	169.38	113.77	181. 05	168.40	106. 15	265.12	291.28	85.30	1.38 .64	144. 52	194. 78	144.8 .5
United States	100.60	103. 43	125. 10	151.04	173. 24	248.33	244. 20	268.18	317.03	236.60	165.85	248.72	211.05	231. 20	212.43

account of highway use. Of this total highway use, resident private vehicles accounted for $\$ 711,268,000$ and nonresident private vehicles accounted for $\$ 3,429$,000 , so that the two types of private highway use account for $\$ 714,697,000$ or 87.5 percent of total net collections. Publicly owned and "foreign" vehicles together account for $\$ 89,362,000$ or 11 percent of total net collections.

Table 18.- Motor-fuel tax collections in the United States in 1939

Classification	Amount	Percentage of total
Highway use:		
Resident.	\$711, 268, 000	- 87.1
Nonresident	3, 429,000	
Publicly owned	10, 728, 000	1. 3
Foreign	78, 634, 000	9.7
Total highway use	804, 059,000	98.5
Nonhighway use.	12,374,000	1.5
Total net taxes collected	816, 433, 000	100.0

All distributions of motor-fuel taxes presented in this study are based on the $\$ 714,697,000$ collected on account of resident and nonresident private vehicle use, data on publicly owned and "foreign" vehicles being excluded. To obtain the included distributions total net motor-fuel tax receipts as presented by the Public Roads Administration's annual statistical table G-1 for the year 1939 were separated by means of data supplied by the States into those resulting from highway use and those resulting from nonhighway use. The highway portion was then apportioned to vehicle types and to population groups on the basis of the motor-vehicle allocation studies. To make this apportionment it was assumed that the ratio of motor-vehicle fuel used by "foreign" and publicly owned vehicles to total motorvehicle fuel used was the same in 1939 as in the year of
the motor-vehicle allocation study, and on that basis it was possible to allocate a part of the highway portion of total net motor-fuel tax collections to travel by foreign and publicly owned vehicles.
The remainder of the highway portion of the net motor-fuel tax collections was attributable to travel by resident and nonresident privately owned vehicles and was apportioned to vehicle types by multiplying the number of vehicles of each type registered in 1939 by the average annual fuel consumption for that type as determined by the motor-vehicle allocation study, and converting the resulting gallonage to dollars on the basis of the applicable fuel tax rate in the particular State, and then adjusting to that amount of the highway portion of total net motor-fuel tax collections previously determined as being attributable to travel by resident and nonresident privately owned motor vehicles. This procedure corrects for relative increases or decreases in the different types of vehicles, but assumes that their distribution among population groups and their relative gasoline consumptions remain the same as during the year of the motor-vehicle allocation study.

NEWER CARS DRIVEN GREATER MILEAGE

An individual allocation of this kind was made for cach State that had completed a motor-vehicle allocation study. In the case of those few States that had not made such studies, the total net motor-fuel tax receipts from highway use were allocated and apportioned on the basis of other States in the same region for which the studies were available. The final results, then, are a series of distributions by vehicle types and population groups of that portion of the total net motor-fuel tax collections for each State that is attributable to resident and nonresident privately owned motor vehicles. Motor-fuel tax collections resulting

Figure 9.-Average Annial Muleage Traveled by Passenger Cars Classified by Yearof Operation Based on Data From 35 States.
from highway use by publicly owned and "foreign" vehicles and from nonhighway use are not included, because they could not logieally be apportioned to population groups.

The amount of motor-fuel taxes collected in any particular case depends on annual mileage, the gasoline consumption rate, the amount of the tax per gallon, and the number of vehicles involved. The computation of average motor-fuel tax payments, of course, eliminates the influence of the number of vehicles. Since the amounts of the tax per gallon are fixed, the determination of the amounts of motor-fuel taxes paid by owners of vehicles residing in each of the population groups requires a study of annual mileage traveled and rate of motor-fucl consumption only. There is considerable variation in the annual mileages that vehicles are driven during each year of their service lives, but the variation in motor-fuel consumption rates, as expressed in miles per gallon, is comparatively small during the lives of motor vehicles.

Table 19 shows the average number of miles passenger cars in various years of operation were driven and the average number of miles obtained per gallon of motor fuel consumed. The vehicles in all States represented were placed on a comparable basis by classifying them by year of operation at the time the motor-vehicle allocation study was made rather than by year model. Passenger cars in their first year of operation averaged 12,980 miles while those in the second year of operation averaged 12,060 miles. During the third year the average annual mileage dropped to 10,620 . From the first year throughout the 12 th year the average annual mileage traveled shows a steady decrease. While data are available for vehicles which had been operated for more than 12 years they are not included in this tabulation. Vehicles which were operating for their 13 th and a greater number of years reported annual mileage figures ranging from 50 to 5,000 miles. The number of questionnaires returned from owners in this group were too few to be considered of value for purposes of computing average annual mileage. Figure 9 presents the average annual mileage traveled by passenger cars, classified by year of operation.

There are several apparent reasons for this variation in ammal mileage by vehicles of various ages. One of the most significant of these is the need for new cars in commercial operations. Passenger cars used for business purposes are usually driven a very high number of miles during the first and second years of operation and

TAble 19.- Average annual mileage traveled and average number of miles traveled per gallon of gasoline consumed by passenger cars, by year of operation

Year of operation	Average mileage traveled during year ${ }^{1}$	A verage number of miles traveled per gallon of gasoline consumed ${ }^{2}$
First	12, 980	16. 1
Second	12,060	15.7
Third	10,620	15. 6
Fourth	9, 580	15.4
Fifth	8, 820	15.0
Sixth	8.120	15.3
Seventh	7,500	15.5
Fighth	6, 630	15.7
Ninth	5, 950	15. 6
'Tenth.	5. 070	15.3
Eleventh	4. 550	15.3
Twelfth.	4. 120	15.3

[^5]are then replaced with a new vehicle. Among private operators there is more interest shown in the operation of a relatively new vehicle and it is probable that owners of the newer vehicles make longer trips during the first few years of the life of the car. Frequently, new vehicles are purchased in anticipation of making a long vacation or business trip. During the first few years of the service life of a car, it is usually owned by a person whose income is adequate to operate it an annual mileage considerably higher than the average or it is used in a commercial operation which requires extensive usage. These vehicles are resold in the used-car market to purchasers in lower income groups with a consequent decease in the annual mileage driven. As the vehicles become older and the resale price becomes less, persons in still lower income groups acquire them. The limited income of these groups permits only a limited use of vehicles resulting in low annual mileage.

Studies of the cost of automobile ownership ${ }^{6}$ indicate that the purchase of used cars by persons in the lowincome group is much more common than the purchase of new ears. Only in the higher income groups were new car purchases more common than purchases of used cars. This study also points out the relatively small amount of money available for operation of automobiles by persons in the low-income group which results in relatively low average annual mileages.

RATE OF FUEL CONSUMPTION LITTLE AFFECTED BY VEHICLE AGE

Trucks and busses do not show the decrease in annual mileage during each successive year of their operation that is characteristic of passenger cars. These commercial vehicles are not subject to changes in model to the same extent as passenger cars. In commercial operations trucks and busses are usually maintained on a basis which will permit daily operation and adherence to regular schedules resulting in a fairly uniform amount of annual travel during the greater part of their lives. Frequently, new motor assemblies are installed in trucks and busses which enable them to be operated to the same extent as a new vehicle. For this reason, the year model of these vehicles was not considered to be of as much importance in determining gasoline consumption as it was in the case of passenger cars, and so was not obtained in all motor-vehicle allocation studies. Consequently, year-model data for

[^6]these vehicles are not available for a sufficient number of States to be presented in this study.
The average distance traveled per gallon of gasoline consumed, as shown in table 19, does not vary with the age of vehicles to the extent which might be expected. A greater number of miles per gallon of gasoline consumed was reported for vehicles in the first year of operation than in any other vear. A steady decline in the number of miles per gallon of gasoline is noted for vehicles operated during the second, third, fourth, and fifth years. Older vehicles which were being operated for their sixth, seventh, eighth, or ninth year showed increases in the number of miles obtained per gallon of gasoline. Those vehicles which were being operated for the tenth and a greater number of years averaged 15.3 miles per gallon of gasoline consumed. Changes in motor design and the increase in efficiency of motors are factors which account for the variations in gasoline consumption rate. The discontinuance of the smaller size motors is probably an important factor also in the difference in the miles-per-gallon figure between the cars operating for their eighth year and those which had been in service only 5 years.
Table 20 shows the average annual mileages and the average motor-fuel consumption rates for passenger cars in each of the regions of the United States. The indicated variations are largely the result of average age, but are also influenced by such factors as climate, topography, industrial development, economic status, and density and distribution of population. Cars of a given age in one region may be driven more or less than cars of that same age in some other region, and in a particular region annual mileages for all cars may be high or low as compared with those in some other region. Table 20 , for example, indicates higher annual mileages in the Southeast, Southwest, and Far West than in the Northeast, while table 21 indicates a lower average age in the Northeast than in any of the other regions. Nevertheless, average age is the major influence in determining annual mileage, perhaps because the other factors which influence annual mileage also directly influence average age. The influence of these other factors on motor-fuel consumption rates may be more pronounced, but in any event, variations in these rates are relatively small.

Table 20.-Average mileage traveled and average number of miles traveled per gallon of gasoline consumed by passenger cars in each of the regions of the United States during year of motorvehicle study ${ }^{1}$

Region	A verage mileage traveled during year?	A verage number of miles tra veled per gallon of gasoline consumed ${ }^{3}$
Northeast.	8,740	15.4
Southeast	9, 070	15.7
Middle States.	8,120	15.1
Northwest	7,200	16.1
Southwest.	8,960	16.0
Far West.	9,020	16.3
United States.--	8,530	15.5

1 The majority of these studies were conducted during 1936.

${ }^{2}$ Based on data from 35 States.

- Based on data from 30 States

In only two States are data on average age of passenger cars available for all population groups but table 10 shows a marked difference in the average ages of cars in rural areas as compared with those in all incorporated
places in 15 States. It may be assumed that similar differences exist among the different groups of incorporated places, and tables 11 and 12 support this assumption, particularly as regards the larger and very small incorporated places. Undoubtedly, the high average age of passenger cars in rural areas largely explains the low average motor-fuel tax payments in those areas, although these low averages are influenced also by favorable motor-fuel consumption rates which exist in these areas.

TABLe 21.-Cumulative percentage distribution of passenger cars of different ages by regions

Region	Percentage of all passenger cars with an average age of -											
					$\begin{aligned} & 5 \text { years and } \\ & \text { less } \end{aligned}$			$8 \text { years and } \begin{gathered} \text { less } \end{gathered}$				¢ ¢ \% E
	Pct.											
Northeast	18.4	29.8	38.7	45.5	52.3	362.1	73.2	85. 4	42. 4	495.9	98.0	100.0
Southeast	14.4	25. 6	35. 6	42.8	47.8	855.3	64. 6	677. 6	67. 5	92. 2	95. 7	100.0
Middle State	11.7	21.0	27.7	32.6	39.3	148.8	63.8	77.1	85. 5	91.5	595.4	100.0
Northwest	11.6	21.3	28.7	33.8	37. 6	314. 6	53. 2	27.2	279.4	87.5	593.0	100.0
Southwest	12.3	21. 5	28.7	33.0	38.3	47. 6	63.7	78.0	86.0	92.0) 95.9	100.0
Far West	14.6	25. 2	31.7	36.9	40.4	47.3	56.7	70.4	479.6	86.1	191.8	100.0
United States	$\overline{13.1}$	$\overline{23.2}$	$\overline{30.7}$	$\overline{36.2}$	$\overline{41.4}$	49.5	$\overline{61.3}$	$\overline{74.7}$	$\overline{84.0}$	90.0	094.4	100.0

RELATIVE AVERAGE FUEL-TAX PAYMENTS LEAST FOR RESIDENT'S OF UNINCORPORATED PLACES
The relative average motor-fuel tax rates per gallon in the different regions of the United States are shown in table 22 while table 23 shows the relative average motor-fuel taxes which would be paid by passenger-car owners in these regions if the tax rate were the same in all regions.

Table 22.-Relative motor-fuel tax rates in effect in 1939

Region	Relative motor-fuel tax rate
Northeast,	0.931
Southeast,	1. 542
Middle States	. 862
Northwest.	1.018
Southwest.	1.043
Far West	. 875
United States.	1. 000

The tax rates per gallon indicated by table 22 are simple weighted averages computed by considering the several prevailing tax rates in each region and the number of gallons taxed at each prevailing rate in that region, and the indicated variations are actual existing variations. The effect of these varying tax rates has been eliminated in table 23 by assuming that the same tax rate per gallon exists in all regions so that the variations in this table are caused entirely by differences in annual mileages and in gasoline consumption rates. Both tables were prepared by assuming the value of the average of all population groups and all regions to be 1.000 , and all other figures on the tables are ratios of that average.

Relative fuel tax rates per gallon according to table 22 vary from 0.862 in the Middle States to 1.542 in the Southeast with a range 0.680 , but relative average fuel tax payments by residents of all places, according to table 23, vary from 0.816 in the Northwest to 1.070 in

Table 23.-Relative average motor-fuel taxes (1999) for passenger cars if same tax rate were in effect in all States (all places, all regions = 1.000)

Region	Unincorporated areas	Incorporated places having a population of-											Total
		$\begin{aligned} & 1,000 \\ & \text { or less } \end{aligned}$	$\begin{aligned} & 1,001 \\ & \text { to } \\ & 2,500 \end{aligned}$	$\begin{aligned} & 2,501 \\ & \text { to } \\ & 5,000 \end{aligned}$	$\begin{gathered} 5,001 \\ \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \\ \text { to } \\ 25,000 \end{gathered}$	$\begin{gathered} 25,001 \\ \text { to } \\ 50,000 \end{gathered}$	$\begin{gathered} 50,001 \\ \text { to } \\ 100,000 \end{gathered}$	$\begin{gathered} 100,001 \\ \text { to } \\ 250,000 \end{gathered}$	$\begin{gathered} 250,001 \\ \text { to } \\ 500,000 \end{gathered}$	$\begin{gathered} 500,001 \\ \text { to } \\ 1,000,000 \end{gathered}$	$\begin{aligned} & \text { More } \\ & \text { than } \\ & 1,000,000 \end{aligned}$	
Northeast	0.878	0.918	0.963	1. 010	1. 034	1. 096	1.077	1. 065	1. 060	1. 017	1.118	1.03 I	1.016
Southeast	. 837	1. 055	1.062	1. 085	1. 053	1. 105	1.078	1. 111	1. 188	1. 051			. 972
Middle States	. 809	. 918	. 990	1. 018	1. 065	1. 076	1. 048	1.115	1.117	1. 186	1. 214	1. 221	1.024
Northwest	. 697	. 800	. 863	. 875	. 867	. 923	. 960	. 968	. 994	. 948			. 816
Southwest	. 888	1.028	1.113	1. 147	1. 080	1. 250	1. 157	1. 137	1. 184	1. 325			1.070
Far West.	. 910	. 790	. 923	. 957	. 996	1. 016	1. 041	1. 064	1. 004	. 994	. 980	1. 142	. 999
United States	. 835	. 919	. 988	1. 021	1. 033	1. 079	1.065	1.088	1. 494	1. 107	1. 141	1. 119	1.000

the Southwest, and the range, 0.254 , is considerably less than in table 22, indicating that the differences in average motor-fuel tax payments among the several regions are caused largely by the different tax rates in those regions.

Table 23 also indicates that the relative average mo-tor-fuel tax payments by residents of the several population groups in a particular region vary considerably, even after the effects of the different motor-fuel tax rates have been eliminated. These average fuel tax payments for residents of all regions vary from 0.835 in unincorporated areas to 1.141 in incorporated places with a population of from 500,001 to $1,000,000$ persons, with a range of 0.306 . This range is larger than the corresponding range among regions, and it is evident that the influence of annual mileages and gasoline consumption rates on average motor-fuel tax payments is greater in the case of population group variations than in the case of regional variations. If the Northwest region with its very low relative average motor-fuel tax payments were disregarded, these variations among population groups would be even more decided as compared with those among regions. The differences in motor-fuel tax rates among the population groups of a particular region are very small, being occasioned only by the fact that all States in the region are not proportionally represented in all population groups, and these differences are minimized by the fact that the States in any one region do not have widely varying motor-fuel tax rates.

On the basis of tables 22 and 23 , it may be concluded that, in general, there are significant differences in average motor-fuel tax payments between population groups in the same region and that these differences are largely the result of differences in annual mileages and gasoline consumption rates. Differences between regions, on the other hand, are primarily the result of different tax rates, although these differences, too, are influenced by mileage and consumption rates. For example, the relatively low motor-fuel tax payments for unincorporated areas as compared with other population groups shown in table 17, which presents actual rather than theoretical average motor-fuel tax payments and where variations are due not only to different annual mileages and consumption rates but also to varying tax rates, are the result of relatively low annual mileages driven by rural residents and, in the case of trucks, of relatively high mileage per gallon of gasoline due to the high percentage of light trucks in rural areas. The high average payments throughout all population groups of the Southeast region, however, are undoubtedly the result of high motor-fuel tax rates in that region.

SOUTHEAST REGION HAD HIGHEST AVERAGE FUEL TAXES

Table 17 further indicates that the highest average annual motor-fuel tax payment for passenger cars was the $\$ 40.60$ paid by residents of places having a population of 100,001 to 250,000 persons in the Southeast region, and that the lowest average motor-fuel tax payment for passenger cars was the $\$ 14.52$ paid by residents of unincorporated areas in the Middle States. The $\$ 40.60$ figure is largely the result of the high motorfuel tax rates in the Southeast region, although it is also influenced by mileage and consumption rates, but the $\$ 14.52$ figure is apparently very largely influenced by mileage because residents of the Far West, and the Northeast, with only slightly higher motor-fuel tax rates, both pay much higher average motor-fuel taxes, the corresponding amounts being $\$ 16.95$ and $\$ 17.52$, respectively. The highest average annual motor-fuel tax paid for trucks was the $\$ 90.56$ paid by residents of places having a population of 100,001 to 250,000 in the Southeast region, the same population group which paid the highest average motor-fuel tax payment for passenger cars. The lowest average motor-fuel tax payment for trucks was the $\$ 20.51$ paid by residents of unincorporated areas in the Northwest region.

The $\$ 25.68$ average motor-fuel tax paid for passenger cars by residents of unincorporated areas in the Southeast is lower than that paid for passenger cars by residents of any other population group in that region but, nevertheless, is higher than the highest average motor-fuel tax paid for passenger cars by the residents of any population group in the Northeast, Middle States, Northwest, or Far West, the highest average motor-fuel taxes paid for passenger cars in these regions being $\$ 22.09, \$ 23.07, \$ 20.62$, and $\$ 22.50$, respectively. The difference between this low average tax of $\$ 25.68$ in unincorporated areas in the Southeast and the next higher average tax for passenger cars in that region, $\$ 33.22$, is relatively large as compared with similar differences in other regions. The same situation exists in the case of trucks and the $\$ 45.91$ average motor-fuel tax paid for trucks by residents of unincorporated areas in the Southeast, although lower than that paid for trucks by residents of any other population group in that region is, except in a very few instances, higher than the highest average motor-fuel tax paid for trucks by residents of any population group in any of the other regions.

In the case of busses, however, the average motor-fuel taxes paid by residents of the different population groups in the Southeast region are not consistently high as compared with corresponding taxes in the other regions, and in fact the $\$ 209.68$ average motor-fuel tax paid for busses by residents of all places in the Southeast region
is lower than the $\$ 211.05$ average motor-fuel tax paid for busses by residents of all places in the United States. This condition is caused by the very large number of school busses that are included in the smaller places in the Southeast, which because of their relatively large number (table 1) and low annual mileage as compared with other busses, affect to a considerable degree the average motor-fuel taxes paid for busses by residents of those places. No doubt equally large numbers of school busses exist in the smaller places of the other regions, but because of different registration practices they are registered as passenger cars or trucks or as publicly owned vehicles, and so are not included as busses. In the larger places, however, except in those having a population of from 250,001 to 500,000 persons, the average motor-fuel taxes paid in the Southeast are larger than the corresponding taxes paid in the other regions.

In contrast with the high average motor-fuel taxes paid by residents of the Southeast region are those paid by residents of the Northwest region (table 17) where the average motor-fuel taxes paid for either passenger cars or trucks by residents of all places are lower than the corresponding taxes paid in any other region. Apparently these relatively low average motor-fuel taxes paid by residents of the Northwest region are almost entirely the result of low annual mileages in that region, since the Far West, the Northcast and the Middle States all have lower average motor-fuel tax rates and since the variation in consumption rates between regions, particularly for passenger cars, is slight. It might be noted as regards the individual population groups, however, that in the case of passenger cars in no single group are the average motorfuel taxes paid in the Northwest lower than those paid in any of the other regions, and in the case of trucks only in unincorporated areas are the Northwest taxes low, so that in the Northwest region there must be less variation in annual mileages among the different population groups than exists in the other regions.

Just as average motor-fuel taxes paid depend on annual mileages, motor-fuel consumption rates, and the tax rate per gallon, so in turn total motor-fuel taxes paid depend on these same things and also on the total number of vehicles involved. Table 16 indicates, for
example, that for all regions as a unit, and for both passenger cars and trucks, the second largest total motor-vehicle fuel taxes paid by residents of any population group are those paid by residents of incorporated places having a population of over $1,000,000$ persons, although places of this size exist in only three of the six regions on which the tabulations are based; table 1 in turn indicates that more vehicles are registered in incorporated places having a population of over 1,000,000 persons than in any other place except unincorporated areas. The largest total motor-fuel taxes paid are those paid by residents of unincorporated areas, which taxes amount to about $2 \frac{1}{2}$ times as much as do those paid by residents of incorporated places having a population of over $1,000,000$ persons; about $21 / 2$ times as many vehicles are registered in unincorporated areas as are registered in incorporated places having a population of over $1,000,000$ persons. The smallest total motor-fuel taxes paid by residents of any population group are those paid by residents of incorporated places having a population of from 500,001 to $1,000,000$ persons and fewer vehicles are registered in this population group than in any other.

ONE-FOURTH OF MOTOR-FUEL TAXES PAID BY RESIDENTS OF UNIN. CORPORATED AREAS

The relations between total motor-fuel taxes paid by residents of different population groups are further developed by table 24 which presents by population groups and regions a percentage distribution of total motor-fuel taxes paid in the United States in 1939. The motor-fuel taxes paid for passenger cars by residents of unincorporated areas in all regions amount to 25.8 percent of the taxes paid for passenger cars by all residents in all regions, which compares with the 28.7 percent of total passenger cars registered in unincorporated areas (sce table 2) and the 26.4 percent of total motor-vehicle registration fees paid for passenger cars by residents of those areas in all regions (see table 14). For the individual regions the percentage of total motor-fuel taxes paid for passenger cars by residents of unincorporated areas varies from 16.8 in the Northeast to 38.7 in the Southeast, while the percentage of total passenger cars registered owned by residents of unincorporated areas varies from 18.5 in the Northeast to

Table 24.-Percentage distribution of State motor-fuel taxes paid on fuel used in passenger cars and trucks in 1939, by population groups PASSENGER CARS

Figure 10.-Registration Fees and Motor-fuel Taxes Paid by Owners of Passenger Cars and Trucks in 1939.
46.0 in the Southeast and the percentage of total motorvehicle registration fees paid for passenger cars paid by residents of unincorporated areas varies from 18.8 in the Northeast to 43.4 in the Southeast.
The influence of vehicle age on total motor-fuel tax collections is indicated by table 25 which compares on a percentage basis total gasoline consumption and total registration of passenger cars of different ages. For passenger cars 5 years of age and less, the percentage of total gasoline consumption is higher for each age group than the corresponding percentage of total registration, while for passenger cars 6 years of age and older, the percentage of total gasoline consumption is lower for each age group than the corresponding percentage of total registration. Cars 5 years of age and less use 55.5 percent of the total gasoline consumed by all cars but constitute only 41.4 percent of the total registration. These percentages, of course, vary in the different regions at any particular time, and because of shifts in ownership of vehicles and movements of large numbers of used cars from one section of the country to another, they vary from time to time in a particular region. Nevertheless, in any region and at any time, the effect of the age of vehicles in operation upon gasoline consumption appears to be relatively important, since the motor-fuel tax is the most important single tax source for highway purposes.

Table 26 presents data on average combined fees, which are simply a combination of average registration fees and average motor-fuel taxes. The relative importance of average combined fees cannot be over-

Figure 11.-Relative Registration Fees and Motor-fuel Taxes Paid by Owners of Motor Vehicles in the Sev. eral Regions in the United States.
emphasized because they represent what the average motorist pays for the privilege of operating his vehicle. Registration fees or motor-fuel taxes alone are not particularly significant because both must be paid, and it is the sum of the two which represents the motorists' outlay. Consequently, it may be stated that the tabulation of average combined fees indicates what are undoubtedly the most significant results of the present study.

Table 25.--Perc by passenger car tribution of pas	tribution h age cla registrat	fotal g fication n	soline co and perc	umption tage dis
Age, years	Gasoline consumption		Registration	
	Percentage of total	Cumulative percent	Percentage of total	$\begin{aligned} & \text { Cumu- } \\ & \text { lative } \\ & \text { percent } \end{aligned}$
1.	19.6	19.6	13.1	13.1
2	14.4	34.0	10.1	23.2
3	9.5	43.5	7.5	30.7
4.	6. 3	49.8	5. 5	36.2
5	5.7	55.5	5.2	41.4
6	7.9	63.4	8.1	49.5
7	10.6	74.0	11.8	61.3
8	10.5	84.5	13.5	74.8
9	6.6	91.1	9.3	84.1
10	3.7	94.8	6. 0	90.1
11	2.4	97.2	4.4	94.5
12 and older	2.8	100.0	5.5	100.0
All	100.0		100.0	

It is apparent from table 26 that average combined fees are influenced much more by average motor-fuel taxes than they are by average registration fees. The average combined fees, for example, are highest in the Southeast, just as the average motor-fuel taxes are highest in that region, whereas the average registration fees are highest in the Northeast and are relatively low in the Southeast. Figures 10 and 11 show for each region the actual and relative amounts, respectively, of registration fees and motor-fuel taxes paid by residents

Table 26.-Combined average vehicle registration fees and average State motor-fuel taxes paid in 1939
PASSENGER CARS

Region	Unincorporated areas	Incorporated places having a population of-											$\begin{aligned} & \text { All } \\ & \text { places } \end{aligned}$	Nonresident	Total
		$\begin{gathered} 1,000 \\ \text { or } \\ \text { less } \end{gathered}$	$\begin{aligned} & 1,001 \\ & \text { to } \\ & 2,500 \end{aligned}$	$\begin{aligned} & 2,501 \\ & \text { to } \\ & 5,000 \end{aligned}$	$\begin{gathered} 5,001 \\ \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \\ \text { to } \\ 25,000 \end{gathered}$	$\begin{gathered} \begin{array}{c} 5,001 \\ \text { to } \\ 50,000 \end{array} \end{gathered}$	$\begin{gathered} 50,001 \\ \text { to } \\ 100,000 \end{gathered}$	$\begin{gathered} 100,001 \\ \text { to } \\ 250,000 \end{gathered}$	$\begin{gathered} 250,001 \\ \text { to } \\ 500,000 \end{gathered}$	$\begin{gathered} 500,001 \\ \text { to } \\ 1,000,000 \end{gathered}$	$\left\{\begin{array}{l} \text { More } \\ \text { than } \\ 1,000,000 \end{array}\right.$			
Northeast Southeast Middle States Northwest Southwest Far West	\$28. 39	\$29.80	\$29.97	\$30. 32	\$29.64	\$30.63	\$28. 39	\$29.93	\$27. 60	\$24. 01	\$30. 87	\$34. 74	\$30.00	\$31.90	\$30.00
	33.89	41. 64	41.98	43. 69	42.47	43.92	43.40	43.67	51.23	41.80			39. 21	41.40	39. 21
	23.67	25. 98	27.11	28.12	28.42	29.22	28.91	29. 17	30.50	32.64	31.51	29.06	27.76	29.07	27.77
	19.87	22.28	23. 69	23.67	24.40	25. 12	27.31	25. 53	25.11	25. 03			22.52	28.16	22.52
	26.72	29.61	31. 99	33. 20	31. 25	35. 54	34. 30	33. 69	33.56	37.91			31.22	26. 24	31.18
	22.93	23.08	23.54	23. 49	23. 61	24.33	24.27	23.79	24.61	27. 54	22.47	25.01	24.13	25.10	24.14
United States.	26. 70	28.33	29.94	30.80	30.11	30.93	30.22	30.98	31.51	31.62	29.89	30.88	29.48	30. 29	29. 48
	TRUCKS														
Northeast Southeast Middle States Northwest Southwest Far West	53. 26	55. 08	57.03	58.65	60.96	61.42	59. 55	71.53	62. 79	58.88	73.85	82.01	64.16	92.04	64. 26
	61.35	85. 16	86.58	89. 36	86.90	94.80	97.31	89.46	118. 22	75. 24			76. 30	95.70	76.56
	39. 59	51.98	53.76	55. 70	59.64	63.65	69. 19	71.47	80.98	74.46	67.63	94.81	59. 39	83.15	59.48
	29.46	47.15	52.03	55. 29	51.07	58.04	48.45	49.67	49.41	47.48			40.33	75.89	40.61
	37.05	53.42	57.75	63.84	62.03	65.37	70.25	63.75	57.03	89.39			53.12	62.30	53.33
	37.93	45.92	46.72	46.33	46.01	49. 14	48.66	47.17	56.00	65.61	58.31	55.41	47.59	55.00	47. 62
United States	45. 43	56.65	59.86	62.86	62. 36	66.01	67.57	71.43	72. 10	71.05	69.00	81.61	59. 99	79. 13	60.14

BUSSES															
Northeast	172.85	215.44	210.59	206.60	197.35	269.67	306.44	305.95	327.01	234.02	347.30	516. 17	315.40	329.18	316. 58
Southeast	105.82	117.91	114. 16	181.80	299.33	419.52	524.25	410.05	710.15	308.05			257.96	367. 68	264.79
Middle States.	108.83	130.91	214. 40	276. 48	337.88	303.79	401.95	423.97	383.62	482.27	378.37	441.34	350.60	543.38	364.35
Northwest.	178.76	94.45	143.73	114.06	230.53	344.73	258.28	339.25	404. 43	295.01			240.77	336.63	250.50
Southwest.	289.05	130.11	169.63	329.95	338.94	320.54	384.32	315.57	451.94	497. 76			405.81	339.20	400. 29
Far West.	106. 22	187.50	176.47	208. 47	143.71	215.66	208.90	132.12	316. 44	364.45	125.43	203.69	190.09	208.83	190. 21
United States.	121.71	137.38	167.06	208. 72	232. 25	312.11	339.74	340.13	408.07	338.43	248.74	426.97	288.77	361.42	293. 74

of the different regions. In view of the relatively large amounts of fuel taxes as compared with registration fees, it is to be expected that the combined fees would show the same tendencies as do the fuel taxes.

The influence of average fuel taxes on average combined fees may be further illustrated by ranking numerically for the several regions average registration fees, average fuel taxes, and average combined fees for all population groups. The result of such ranking for passenger cars is indicated in table 27 which clearly shows that the influence of average motor-fuel taxes is more pronounced than that of average registration fees on average combined fees. Wherever there is a difference in the ranking of a particular region in the case of average registration fees as compared with average fuel taxes, its ranking in the case of combined fees is the same as in the case of fuel taxes.

Table 27.-Numerical rank of average registration fees, average fuel taxes, and average combined fees for passenger cars, by regions
[All population groups]

Region	$\begin{aligned} & \text { A verage } \\ & \text { registration } \\ & \text { fees } \end{aligned}$	Average fue] taxes	Average combined fees
Northeast			3
Southeast	3	1	1
Middle States.	2	4	4
Northwest.	6	6	6
Southwest	4	$\stackrel{2}{5}$	
Far West.	5	5	

In the case of individual population groups, however, it is not always true that combined average fees tend to follow average fuel taxes rather than average registration fees. Table 28 presents for unincorporated areas only the same rankings as are presented in table 27 for all population groups, but whereas in table 27 all regions rank the same as regards average fuel taxes
and average combined fees, in table 28 only the Southeast ranks the same as regards average fuel taxes and average combined fees. In the Northwest and Far West, average registration fees and average combined fees rank the same, and in the other regions average combined fees rank midway between average registration fees and average fuel taxes.

Table 28.-Numerical rank of average registration fees, average fuel taxes, and average combined fees for passenger cars, by regions

Region	Average registration fees	A verage fuel taxes	Average combined fees
Northeast.	1	3	2
Southeast.	3	1	
Middle States.	2	6	4
Northwest	6	5	6
Southwest.	4	2	3
Far West.	5	4	5

RANGES IN MOTOR-FUEL TAXES AND REGISTRATION FEES

 COMPAREDTable 27 shows further that average registration fees and average fuel taxes as they exist in the different regions tend to equalize the average combined fees in those regions. Residents of the Northeast and Middle States, for example, pay the highest average registration fees, whereas residents of the Southeast and Southwest pay the highest fuel taxes. Residents of the Northwest and Far West, on the other hand, pay both the lowest average registration fees and also the lowest average fuel taxes. In other words, the highest average combined fees are somewhat less than they would be if the highest average registration fees and also the highest average fuel taxes were paid by residents of the same region or regions, but are not as low as they might be if the lower fees and taxes were
more widely distributed throughout the different regions.

This particular situation may also be demonstrated by comparing the ranges or the differences between the high and low of average motor-vehicle registration fees, average motor-fuel taxes, and average combined fees. On a regional basis and for all population groups as a unit average motor-vehicle registration fees for passenger cars vary from $\$ 5.60$ in the Northwest to $\$ 10.72$ in the Northeast with a range of $\$ 5.12$, while average motor-fuel taxes vary from $\$ 16.92$ in the Northwest to $\$ 30.52$ in the Southeast with a range of $\$ 13.60$, and average combined fees vary from $\$ 22.52$ in the Northwest to $\$ 39.21$ in the Southeast with a range of $\$ 16.69$. In the case of trucks average motor-vehicle registration fees vary from $\$ 10.83$ to $\$ 29.49$ with a range of $\$ 18.66$, while average motor-fuel taxes vary from $\$ 29.50$ to $\$ 57.48$ with a range of $\$ 27.98$ and average combined fees vary from $\$ 40.33$ to $\$ 76.30$ with a range of $\$ 35.97$. If residents of the same region paid the highest existing average registration fee for passenger cars of $\$ 10.72$ and the highest average existing motor-fuel tax for passenger cars of $\$ 30.52$ they would pay an average combined fee of $\$ 41.24$, whereas the highest average combined fee paid by residents of any region for passenger cars was actually $\$ 39.21$, or somewhat less than the theoretical maximum. Similarly, the theoretical maximum range of average combined fees for passenger care is $\$ 5.12$ plus $\$ 13.60$ or $\$ 18.72$, whereas the actual existing range of average combined fees for passenger cars is $\$ 16.69$.

That the combination of average motor-vehicle registration fees and average motor-fuel taxes tends to decrease the range and the actual amounts of the average combined fees paid by residents of a particular locality can be demonstrated on a population-group basis as well as on a regional basis. In the case of passenger cars, for example, average registration fees paid by residents of all regions vary from $\$ 8.38$ in unincorporated areas to $\$ 10.95$ in incorporated places having a population of more than $1,000,000$ persons, or a range of $\$ 2.57$, while average motor-fuel taxes vary from $\$ 18.32$ to $\$ 23.15$, or a range of $\$ 4.83$, and average combined fees vary from $\$ 26.70$ to $\$ 31.62$, or a range of $\$ 4.92$. Although these ranges are considerably smaller than those existing between regions, the maximum theoretical range of $\$ 2.57$ plus $\$ 4.83$ or $\$ 7.40$ is considerably more than the actual range of $\$ 4.92$. Likewise, the maximum theoretical combined average fee for all groups is $\$ 10.95$ plus $\$ 23.15$ or $\$ 34.10$, whereas the highest existing combined fee is $\$ 31.62$. Apparently the tendencies between individual population groups toward more stable average combined fees than the maximums theoretically possible are the same as those existing between regions.

A final fact which may be noted in connection with average combined tax contributions is that where the average contribution for all population groups existing in a particular region is high or low as compared with that existing in other regions, the average contributions in each individual population group of that region are not necessarily high or low as compared with similar contributions in corresponding population groups of the other regions. The lowest average combined fee for passenger cars for all population groups, for example, is the $\$ 22.52$ paid by residents of the Northwest, but in the individual population groups the average combined contribution of residents of the Northwest is lower than
that of residents of other regions in only three instances, the contributions of residents of the Far West being lower in the other seven instances. Similar variations exist in other regions and for the other vehicle types. Although such variations are neither unusual nor unexpected, they are worthy of notice in an analysis of data where the primary interest is in population-group relationships.

SUMMARY

In connection with this primary interest in popula-tion-group relationships, it will be recalled that the particular purpose of the present study is to present by population groups data on motor-vehicle registrations, motor-vehicle registration fees, and motor-fuel taxes. Such data have not previously been available on such a basis. In developing these data, numerous significant relationships as regards the ownership and operation of vehicles in the different population groups have been indicated. A few of the general conclusions which may be drawn from the data presented and analyzed are listed in the following paragraphs:

1. Although 40.2 percent of all vehicles in the United States are owned by persons residing in unincorporated areas and in incorporated cities and towns having a population of less than 2,500 persons, these persons constitute 43.6 percent of the total population of the country.
2. In unincorporated areas alone, however, 35.5 percent of the population of the country owned only 29.6 percent of the motor vehicles registered in 1939.
3. Of the total population of the United States, 47.5 percent resided in incorporated places having a population of less than 500,000 persons. The residents of these places owned 55.9 percent of the total number of vehicles registered in 1939.
4. The number of passenger cars registered per 100 persons varies from a maximum of 53.2 in incorporated places having a population of from 50,001 to 100,000 persons in the Far West to a minimum of 10.2 in unincorporated areas in the Southeast. In general, the number of cars per 100 persons in unincorporated areas and in cities having a population of more than 500,000 persons is low as compared with those in incorporated places having a population of less than 500,000 persons.
5. The average age of passenger cars owned by residents of unincorporated areas generally exceeds the average age of passenger cars owned in incorporated places by 1 to 2 years.
6. Average registration fees for all types of vehicles owned in unincorporated areas are lower than the average registration fees of vehicles owned in the incorporated cities and towns; vehicle owners living in cities having a population of more than $1,000,000$ persons paid the highest average registration fees of any population group.
7. The average motor-fuel tax payments by residents of the different population groups in a particular region vary considerably, even after the effects of the different motor-fuel tax rates have been eliminated, such variations being due to differences in annual mileages and gasoline consumption rates.
8. The average motor-fuel tax payments by residents of the different regions vary considerably, but these variations, although influenced to a certain extent by differences in annual mileages and gasoline consumption rates, are largely the result of different motor-fuel tax rates.
9. The Southeast region which had the highest relative gasoline tax rate also had the highest average annual mileage reported for passenger cars.
10. Passenger cars 5 years of age and less use 55.5 percent of the total gasoline consumed by all cars but constitute only 41.4 percent of the total passenger-car registration.
11. Average combined fees are influenced much more by average motor-fuel taxes than by average registration fees, which is to be expected in view of the relatively large amounts of fuel taxes as compared with registration fees.
12. Although average combined fees are widely variable, just as are average registration fees and average motor-fuel taxes, the variation in the case of combined fees is not quite so extreme as would be theoretically possible, the fees being somewhat stabilized by the particular way in which the different average registration fees and average motor-fuel taxes are distributed among the different regions and population groups.

APPENDIX

Population and motor-vehicle registration data were not available for the year 1940 during the period in which this study was made. Since its completion the motor-vehicle registration data for that year have become available. Also, the population enumeration for the 1940 Census has been completed. Availability of these materials has made it possible to present tabulations which show the distribution of motor vehicles by States and population groups for the year 1940 . Three tabulations have been prepared. They are:
A.-Distribution of privately owned automobiles by population groups in the United States in 1940.
B.-Distribution of privately owned trucks by population groups in the United States in 1940.
C.-Distribution of all privately owned vehicles by population groups in the United States in 1940.

Table A.-Distribution of privately owned automobiles by population groups in the Unted States in 1940

State	Automobiles owned by residents of-										
	Unincorporated areas	Incorporated places having a population of -									All places
		$\begin{aligned} & 2,500 \text { or } \\ & \text { less } \end{aligned}$	$\begin{gathered} 2,501 \text { to } \\ 5,000 \end{gathered}$	$\begin{gathered} 5,001 \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \text { to } \\ 25,000 \end{gathered}$	$\begin{gathered} 25,001 \text { to } \\ 50,000 \end{gathered}$	$\begin{gathered} 50,001 \text { to } \\ 100,000 \end{gathered}$	$\begin{gathered} 100,001 \text { to } \\ 250,000 \end{gathered}$	$\begin{gathered} 250,001 \text { to } \\ 500,000 \end{gathered}$	$\begin{gathered} \text { More than } \\ 500,000 \end{gathered}$	
Alabama Arizona- Arkansas California	$\begin{array}{r} \text { Number } \\ 123,098 \\ 51,299 \\ 95,096 \\ 588,331 \end{array}$	$\begin{gathered} \text { Number } \\ 23,192 \\ 5,886 \\ 23,709 \\ 68,051 \end{gathered}$	$\begin{array}{r} \text { Number } \\ 14,995 \\ 5,409 \\ 15,198 \\ 86,144 \end{array}$	$\begin{array}{r} \text { Number } \\ 15,149 \\ 12,854 \\ 13,193 \\ 147,631 \end{array}$	Number 19, 658	Number 13, 441 13, 504 5, 480	Number 24,609 23,993 16,890 216,117	Number	$\begin{aligned} & \text { Number } \\ & 38,972 \end{aligned}$	Number	$\begin{aligned} & \text { Number } \\ & 273,114 \\ & 112,945 \\ & 190,589 \end{aligned}$
Colorado	$\begin{array}{r} 73,857 \\ 111,591 \\ 23,544 \\ 105,333 \end{array}$	$\begin{array}{r} 43,341 \\ 3,551 \\ 89,084 \\ 29,267 \end{array}$	$\begin{array}{r} 17,216 \\ 3,170 \\ 5,656 \\ 25,720 \end{array}$	$\begin{array}{r} 18,372 \\ 5,833 \\ 1,446 \\ 24,713 \end{array}$		$\begin{array}{r} 12,971 \\ 100,084 \end{array}$	12,50328,288	$\begin{array}{r} 115,078 \\ 21,479 \\ 123,066 \end{array}$	90, 450		$\begin{array}{r} 292,626 \\ 416,656 \\ 60,209 \\ 413,723 \end{array}$
Connecticut					49, 061						
Florida. -					47, 359	39,728	18,537				
Georgia Idaho	165,42162,990314,429315,470	$\begin{array}{r} 41,971 \\ 18,977 \\ 171,349 \\ 90,438 \end{array}$	$\begin{aligned} & 21,920 \\ & 13,483 \\ & 76,680 \\ & 30,700 \end{aligned}$	$\begin{array}{r} 23,263 \\ 4,696 \\ 114,138 \\ 56,071 \end{array}$	$\begin{array}{r} 36,790 \\ 21,721 \\ 130,569 \\ 58,241 \end{array}$	$\begin{array}{r} 5,064 \\ 7,587 \\ 145,156 \\ 76,560 \end{array}$	47, 760		69, 250	580,708	$\begin{array}{r} 412,439 \\ 129,454 \\ 1,706,639 \\ 856,528 \end{array}$
Illinois							143, 643	29,967			
Indiana							61,389	74,511	93, 148		
Inwa	$\begin{array}{r} 218,853 \\ 166,428 \\ 208,160 \\ 94,299 \end{array}$	171,1439,46830,29121,926	$\begin{aligned} & 52,976 \\ & 35,929 \\ & 15,136 \\ & 14,545 \end{aligned}$	$\begin{aligned} & 44,637 \\ & 28,631 \\ & 21,090 \\ & 19,645 \end{aligned}$	$\begin{aligned} & 41,864 \\ & 64,240 \\ & 13,963 \\ & 13,965 \end{aligned}$	$\begin{aligned} & 48,593 \\ & 10,342 \\ & 33,135 \\ & 19,433 \end{aligned}$	$\begin{array}{r} 69,201 \\ 19,660 \\ 9,922 \\ 25,433 \end{array}$	$\begin{aligned} & 43,990 \\ & 61,304 \end{aligned}$	$\begin{aligned} & 55,371 \\ & 71,417 \end{aligned}$		691, 257 387,068 280, 663
Kansas.											
Kentucky											
Louisiana											
Maine	165, 973	$\begin{array}{r} 59,468 \\ 25,263 \\ 40,134 \\ 137,376 \end{array}$	$\begin{aligned} & 24,863 \\ & 14,599 \\ & 48,022 \\ & 69,204 \end{aligned}$	$\begin{array}{r} 23,619 \\ 7,842 \\ 73,525 \\ 84,520 \end{array}$	$\begin{array}{r} 27,531 \\ 20,693 \\ 145,789 \\ 105,793 \end{array}$	$\begin{array}{r} 11,611 \\ 14,264 \\ 143,443 \\ 107,286 \end{array}$	14,700			$\begin{array}{r} 135,340 \\ 96,583 \\ 417,953 \end{array}$	$\begin{array}{r} 161,792 \\ 383,974 \\ 790,312 \\ 1,400,838 \end{array}$
Maryland											
Massachusett	287, 267						102,230 109,276	140,586 82,163			
Minnesota	$\begin{aligned} & 244,563 \\ & 11,272 \\ & 225,570 \\ & 65,795 \end{aligned}$	$\begin{array}{r} 132,123 \\ 21,226 \\ 103,189 \\ 19,411 \end{array}$	$\begin{array}{r} 34,968 \\ 11,791 \\ 38,866 \\ 8,399 \end{array}$	$\begin{aligned} & 52,763 \\ & 10,549 \\ & 43,666 \\ & 10,357 \end{aligned}$	$\begin{aligned} & 47,299 \\ & 24,215 \\ & 65,103 \\ & 22,275 \end{aligned}$	$\begin{array}{r} 7,339 \\ 6,662 \\ 19,309 \\ 16,831 \end{array}$	$\begin{aligned} & 11,663 \\ & 26,412 \end{aligned}$	20, 442	206,79281,774		$\begin{aligned} & 746,289 \\ & 196,478 \\ & 768.345 \\ & 143,068 \end{aligned}$
Mississippi										164,456	
Missouri.											
Montana											
Nebraska	$\begin{array}{r} 134,128 \\ 14,983 \end{array}$	$\begin{array}{r} 75,672 \\ 3,190 \\ 40,379 \\ 54,01 \end{array}$	$\begin{gathered} 17,634 \\ 2,765 \\ 12,701 \\ 47,561 \end{gathered}$	$\begin{array}{r} 15,250,276 \\ 5,976 \\ 7,732 \\ 85,661 \end{array}$	$\begin{array}{r} 25,944 \\ 8,350 \\ 20,077 \\ 127,850 \end{array}$	$\begin{array}{r} 11,989 \\ 142,645 \end{array}$	25, 851	52,838	138, 766		347,31735,264105,034944,630
Nevada							12,156				
New Jersey...	156,648						93, 544	97,938			
New Mexico	$\begin{array}{r} 32,885 \\ 467,747 \\ 216,301 \\ 76,161 \end{array}$	$\begin{array}{r} 8,400 \\ 99,886 \\ 82,641 \\ 34,734 \end{array}$	$\begin{array}{r} 6,412 \\ 79,824 \\ 29,393 \\ 1,841 \end{array}$	$\begin{aligned} & 17,139 \\ & 70,556 \\ & 30,746 \\ & 10,266 \end{aligned}$	$\begin{array}{r} 16,444 \\ 167,898 \\ 48,790 \\ 13,487 \end{array}$	$\begin{array}{r} 13,254 \\ 89,883 \\ 28,233 \\ 9,256 \end{array}$	$\begin{aligned} & 90,179 \\ & 48,048 \end{aligned}$	$\begin{array}{r} 109,557 \\ 19,342 \end{array}$	58,840	1, 165, 126	$\begin{array}{r} 94,534 \\ 2,399,496 \\ 503,494 \\ 145,746 \end{array}$
New York North Carolina											
North Dakota.											
Ohio	$\begin{aligned} & 478,097 \\ & 154,828 \\ & 129,630 \\ & 523,592 \end{aligned}$	$\begin{array}{r} 137,778 \\ 62,848 \\ 42,341 \\ 148,258 \end{array}$	$\begin{array}{r} 68,671 \\ 25,158 \\ 181,674 \\ 131,343 \end{array}$	$\begin{array}{r} 107,108 \\ 37,700 \\ 16,548 \\ 173,654 \end{array}$	$\begin{array}{r} 134,813 \\ 66,104 \\ 19,548 \\ 235,129 \end{array}$	$\begin{array}{r} 123,185 \\ 16,270 \\ 8,885 \\ 92,042 \end{array}$	67, 460	$\begin{aligned} & 173,281 \\ & 104,191 \end{aligned}$	$\begin{array}{r}251,851 \\ \hline 89,504\end{array}$	$\begin{gathered} 186,031 \\ \hline 360,523 \end{gathered}$	$\begin{array}{r} 1,728,275 \\ 467,099 \\ 325,130 \\ 1,877,495 \end{array}$
Oklahoma											
Oregon											
Pennsylvania							147, 858	65,096			
Rhode Island		$\begin{array}{r} 3,597 \\ 31,544 \\ 41,369 \\ 25,373 \end{array}$	$\begin{array}{r} 10,466 \\ 19,777 \\ 9,383 \\ 23,373 \end{array}$	$\begin{aligned} & 13,605 \\ & 19,139 \\ & 12,542 \\ & 22,639 \end{aligned}$	$\begin{aligned} & 20,129 \\ & 20,448 \\ & 18,984 \\ & 23,047 \end{aligned}$	$\begin{array}{r} 59,481 \\ 17,667 \\ 12,726 \\ 4,809 \end{array}$	17,19930,103	$68,050$	41, 864		166,341 289,088 163,252 163,252 377,316
South Carolina	$\begin{array}{r} 148,810 \\ 68,248 \\ 158,019 \end{array}$										
Tennessee											
Texas	$\begin{array}{r} 445,395 \\ 23,347 \\ 41,692 \\ 266,425 \end{array}$	$\begin{array}{r} 109,143 \\ 21,729 \\ 13,327 \\ 20,981 \end{array}$	$\begin{array}{r} 82,587 \\ 10,619 \\ 3,804 \\ 12,483 \end{array}$	$\begin{array}{r} 91,086 \\ 5,696 \\ 11,642 \\ 16,307 \end{array}$	$\begin{array}{r} 99,418 \\ 6,144 \\ 6,765 \\ 12,248 \end{array}$	$\begin{gathered} 66,718 \\ 10,370 \\ 6,692 \\ 23,880 \end{gathered}$	120,968	$\begin{aligned} & 43,928 \\ & 39,121 \end{aligned}$	283, 618		$\begin{array}{r} 1,342,861 \\ 117,026 \\ 83,922 \\ 422,591 \end{array}$
Utah											
Vermont							24, 088	46, 179			
Washington	$\begin{array}{r} 186,226 \\ 11,296 \\ 215,927 \\ 23,752 \end{array}$		$\begin{array}{r} 21,919 \\ 13,452 \\ 45,884 \\ 4,329 \end{array}$	$\begin{array}{r} 11,206 \\ 17,708 \\ 36,305 \\ 4,302 \end{array}$	$\begin{aligned} & 33,064 \\ & 22,354 \\ & 61,030 \\ & 20,83 \end{aligned}$	$\begin{array}{r} 22,468 \\ 14,247 \\ 112,809 \end{array}$	$\begin{aligned} & 41,307 \\ & 34,455 \end{aligned}$	59,805	91, 879		$\begin{array}{r} 473,048 \\ 250,294 \\ 750,953 \\ 6,613 \\ 146,612 \end{array}$
West Virginia											
Wisconsin.										129, 553	
W yoming										146, 612	
District of Columbia											
Total	7,890,776	2, 645, 440	1, 386, 642	1,698, 717	2, 434, 965	1,914, 288	1,735,442	1,778, 903	1, 801, 457	4, 085, 767	27, 372, 397

Table B.-Distribution of privately owned trucks by population groups in the United States in 1940

State	Trucks owned by residents of-										
	Unincorporated areas	Incorporated places having a population of-									All places
		$\begin{aligned} & 2,500 \text { or } \\ & \text { less } \end{aligned}$	$\begin{gathered} 2,501 \text { to } \\ 5,000 \end{gathered}$	$\begin{gathered} 5,001 \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \text { to } \\ 25,000 \end{gathered}$	$\begin{gathered} 25,001 \text { to } \\ 50,000 \end{gathered}$	$\begin{gathered} 50,001 \text { to } \\ 100,000 \end{gathered}$	$\begin{gathered} 100,001 \text { to } \\ 250,000 \end{gathered}$	$\begin{gathered} 250,001 \text { to } \\ 500,000 \end{gathered}$	$\begin{aligned} & \text { More than } \\ & 500,000 \end{aligned}$	
Alabama.	$\begin{gathered} \text { Number } \\ 30,919 \end{gathered}$	Number 6, 108	$\begin{aligned} & \text { Number } \\ & 3,624 \end{aligned}$	Number 3217	Number 4. 206	Number 2, 877	Number 4, 607	Number	Number 7, 289	Number	Number 62, 847
Arizona.	-32,582	1,358	- 1,312	3,099		1,283	5,474				25, 108
Arkansas	34,977	10, 003	5,592	4,462	6,415	1,332	3, 377				66,158
California	74,540	19, 714	19,064	29,044	28,459	21,441	22,716	15,689	8,669	80,365	319,701
Colorado	21288	9,533	3,928	3,492	4, 096	1,972	1,963		12,046		58,318
Connecticut	34,427 4,852	$\begin{array}{r}759 \\ 1.492 \\ \hline\end{array}$	630 908	998 219	7,457	11,756	4, 003	15,809 4,083			75, 839
Delaware	4.852 23,992	1,492 5,932	908 5.750	219 4,752	7,599	6, 685	3, 089	4,083 21,991			$\begin{aligned} & 11,554 \\ & 79,790 \end{aligned}$
Georgia	38,634	10,799	4760	4, 652	7, 514	1,036	8,115		11,672		87, 182
Idaho-	19,478	5,373	3,349	1, 109	3, 464	985 15.670	13,521	3.408			33,758 219,175
Indiana	53,210	18,272	11, 590	13,799 9,356	15,415 9,002	10,60 9,948	13, 8,271	${ }_{9} 1116$	13,592	64,478	219, 175
Iowa	22,355	30,540	9,591	7,861	7, 136	7,936	10,436	6,857			102,712
Kansas.	43,744	20, 161	6,635	5,257	9,931	2, 070	3,619	11,016			102,433
Kentucky	42, 806	6,623	3,390	3,815	2,811	6,596	1,331		8, 519		75, 891
Louisiana	41, 212	6,792	4,336	5,810	3, 566	3, 503	3,734		12,840		81, 793
Maine		19,038	6,360	6,216	6,047	2,867	3,386				43, 914
Maryland.	26,893	4,585	1,834	¢79	2,423	2, 166				20,642	59,422
Massachusetts		9,079 20,875	8,325 7,829	12,189 9,679	21,409 12,282	11, 187	13,141 10,033	17,718 9,048		11,594 40,001	108,642 150,875
Minnesota	29,614 50,365	24,741	5,647	8, 8 , 674	7,388	1,140		2, 774	23, 734		124,463
Mississippi	37,544	6,887	3,415	2,895	6,665	1,280	2, 241				60, 927
Missouri.	42,905	23, 000	8,841	8, 461	11,389	3, 319	5,517		13, 928	32,666	150,026
Montana	32, 247	4, 200	1,637	2,236	4, 271	3, 373					47, 964
Nebraska	27, 148	15, 198	3,668	2,974	4,449		3, 403	7,649			64, 489
Nevada...	3,692	1,415	589	1,250	1,789						8,735
New Hampshire		14,339	3,681	2,005	5, 019	2,438	2,580				30, 062
New Jersey-	25, 537	7,807	5,859	9, 892	15,656	17,519	15, 572	14,724	24,560		137, 126
New York.	68, 183	13,038	8. 673	7,325	18,400	9,868	13, 423	14,798	9,311	172,742	335, 761
North Carolina	31,211	15,789	5,555	6, 086	10,134	5,860	9,142	3,680			87, 457
North Dakota	20,017	8,437	${ }^{5} 416$	2, 481	3,320	1,713					36, 384
Ohio	53.457	17,715	7,745	12,102	13,735	11,920	4,307	19,378	28,587	21,708	190,654
Oklahoma	43,906	14, 497	5,599	7,693	13, 028	3, 171		16,934			104,828
Oregon-.....-	34,401 79,126	10, 854	4, 103	3,238	3,730	1,459			9,971		67, 756
Rhode Island	79,126	19, 584	14,864 1,606	19,64 1,884	27,374 2,602	10,265 6,189	22, 1,737	9,363	6,115	60.492	262,755 20,717
South Carolina	19,925	5,839	3,989	3. 973	4, 194	3,265	5,221				46, 406
South Dakota	13, 534	8, 827	I, 921	2, 261	3,791	1,964					32,298
Tennessee....	30, 897	5,994	5,099	4,552	3,819	-672		12,039	7,595		70,667
Texas	132, 4,57	33, 543	26,665	28, 085	28,222	16, 649	25, 261	8,353	51, 205		350,440
Utah.-	5. 138	5,337	2,485	1,105	1. 385	1,533		5,251			22, 234
Virginia	$\begin{array}{r}5, \\ 54,230 \\ \hline\end{array}$	2, 677	1,600	2, 511	2,073	3664					9, 628
Washington	46, 426	10, 532	4, 332	1,921	4, 542	3,123	, 37	7. 552	9, 806		88, 234
West Virginia	22,417	5,497	2,344	3.555	4.411	2.725	10,571				51, 520
Wisconsin -	58, 924	30, 706	10, 162	6,631	8,269	15, 004	4,049			15,506	149,251
W y yoming -	9,363	3, 769	1,042	782	3, 943					13,928	$\begin{aligned} & 18,899 \\ & 13,928 \end{aligned}$
Total	1,566,677	552, 966	257, 510	289, 145	378, 210	258,945	250, 114	243, 2.58	259, 439	534, 122	4,590,386

The basic materials used in the preparation of the population group distribution of vehicles for the year 1939 were used in preparing the 1940 tabulations. In the computation of the 1940 data the population of each group for 1940 was divided by the number of persons per vehicle in 1939 for that group except that for those individual places which had sufficient increase or decrease in population to cause a shift to a new classifi-
cation the original ratio of persons per vehicle, based on the previous census, was used. The computed number of vehicles in each population group when totaled was of course at variance with the known registration totals for each State. This difference was eliminated by applying an adjustment factor uniformly to each population group in each State.
(Continued on p. 261)

SUBSTITUTION OF PAINT COATINGS FOR METALLIC ZINC COATINGS

By E. F. HICKSON, Chemist, National Bureau of Standards

Abstract

This bulletin is issued at the request of the Protective and Technical Coatings Section of the Office of Production Management in the interest of conservation. The object is to suggest substitutes that at the time of writing are avilable to replace critical materials.

IN numerous ways zinc is vital to the nation's defense program. Thus for nondefense purposes, an increasing number of inquiries are being received with regard to suitable substitutes for the zinc coating formerly used on various iron and steel surfaces. This article will be confined to the use of organic protective coatings as possible substitutes for metallic zinc coatings.

As is the case with many other materials which are critical during the present National Emergency, no paint has all the desirable properties of the ordinary hot-dip galvanized or zinc-coated surfaces on steel, including such properties as resistance to abrasion, resistance to corrosion, weathering, relative freedom from cracking, chipping, peeling and scaling of the types encountered with paint coatings, etc. On the other hand, in a highly polluted industrial atmosphere, certain acid-resisting and water-resisting paints are advantageous.

Thus since the environment and other external factors have such a pronounced effect on the durability of both paint and metallic zinc coatings, only general statements can be made in this memorandum. Frequently painting systems have to be devised so as to cover each individual case. Thus any general procedure or recommendation may not cover a specific situation. It is with this thought in mind that the following suggestions are made.

Factory-primed exterior sheet steel formerly zinc-coated (roofing, flashings, etc.).-Since much of the work referred to herein will be done at the shop where the metal is rolled and fabricated, the priming paints to be employed for this purpose should be industrial finishes purchased by the steel manufacturer directly from the industrial finish manufacturer. Special industrial primers for preventing corrosion of black iron have been developed and are readily available. They generally consist of rust-inhibitive pigments such as red lead, white lead, blue lead, metallic lead, zinc oxide, with or without various percentages of chromate pigments, often combined with iron oxide pigments. They are usually ground in quick-drying varnish liquids. The articles are either sprayed or dipped with these primers. While they may air-dry rapidly, they are usually baked in suitable ovens. Baking for a relatively short period produces a hard, dry surface which may be handled, thus expediting production in the factory. On the other hand, where the objects are to be coated in the field by the user, the slower-drying types of primers, such as red lead in oil and similar rust-inhibitive primers, may be used.

The industrial finish manufacturer has also worked out special priming liquids and finishes for the interiors and exteriors of drums which are to hold certain industrial liquids such as oils, etc. These primers are usually baked on by the drum manufacturer, thus making them very much more resistant to various liquids. For those having problems of this character, it is suggested that they immediately get in touch with a reliable manufacturer of industrial finishes.

If the sheet steel is painted at the factory, it may be given a chemical treatment followed by a baked-on, high-grade priming paint. Sheet steel coated with vitreous or glass coating is also available. In connection with the chemical surface treatment, reference should be made to BMS Report 44, "Surface Treatment of Steel Prior to Painting," of the National Bureau of Standards. A copy of this report can be obtained from the Superintendent of Documents, Government Printing Office, Washington, D. C., for 10 cents. In this report, it was found that among surface treatments for plain steel subjected to accelerated weathering, salt spray, and condensation corrosion tests, the hot-dip phosphate treatments showed outstanding merit in improving the protective value of paints. Particularly effective protection was obtained when such treatments were used under severely corrosive conditions in combination with a primer of the inhibitive type. Two phosphatechromate cold-wash treatments for plain steel also appeared to improve paint protection.

It is essential that the primer be baked on at proper temperatures and under proper operating conditions. It is also essential that the primer be of high-grade quality and that it be not thinned excessively on the job. As has been mentioned, the primer should contain rust-inhibitive pigments and the vehicle should be of a suitable baking type. Finish coat paints of the desired color may be applied on the job. For example, finish coats of white or light tint paints may be obtained under Federal Specifications TT-P-36a, ${ }^{1} \mathrm{~T} T-\mathrm{P}-156$, and TT-P-101a; red and brown iron oxide paints under Federal Specification TT-P-31a, black paint under Federal Specification TT-P-61; and green paint under Federal Specification TT-P-71a.

Painting exterior sheet metal on the job formerly zinccoated (roofing, flashings, window and louver heads, etc.).The problem here is to have a sheet that must stand exposure to ordinary storage, handling, and fabrication, and then be able to be welded or soldered and subsequently painted. One Government agency specifies that for exterior sheet metal work for roof flashings and flashing at door, window, and louver heads the materials shall be either phosphate-treated steel or terne plate. It also specifies that the surfaces that are to be painted shall be thoroughly cleaned and all traces of flux removed. The steel shall be 26 gage, phosphatetreated, and given immediately a dip-coat of mineral oxide paint baked on at a temperature of 250° to $300^{\circ} \mathrm{F}$. Both sides of phosphate-treated steel and all exposed surfaces of other sheet metal work, flashings, etc. (except copper), shall be painted with one coat of red lead and oil paint before placing. The red lead paint shall comply with Federal Specification TT-P-86.

Painting interior sheet steel formerly zinc-coated (air ducts, etc.).-The same recommendations of pretreating the steel prior to applying a baked-on, high-grade, rust-

[^7]inhibitive primer may be followed. However, for certain places where the surface is not to be exposed to the weather, the application of a bituminous base coating (F. S. SS-R-451) may serve the purpose. However, it should be required that this coating dry hard and free of tackiness. In the case of air ducts that become hot, it is suggested that instead of the above-described bituminous base coating, the ducts be dipped in asphalt varnish (F. S. TT-V-51). This will produce a coating that will bake on the surface at a temperature of 300° to $400^{\circ} \mathrm{F}$. Special heat-resisting enamels in black and gray colors are also available. These enamels will withstand temperatures considerably above $400^{\circ} \mathrm{F}$.

Painting exterior structural steel (girders, towers, etc.), formerly zinc-coated.-After priming the clean surface with a rust-resisting primer such a red lead paint (F. S. TT-P-86), basic lead chromate paint (F. S. TT-P-59), blue lead paint (F. S. TT-P-20), etc., use a finish coat of gray paint or any other tint conforming to Federal Specification TT-P-36a or TT-P-156. If chalk-resistant titanium oxide is specified, Federal Specification TT-P-101a, or War Department Cantonment Paint, Standard Specification 8000 E, page 88, June 30, 1941, may also be used, tinted gray or any other desired color. If color is of no moment, dark-colored paints such as iron oxide (F. S. TT-P-31a) or black (F. S. TT-P-61) will be more durable than white or light tint paints. Additional information on painting structural steel may be found in the National Bureau of Standards Letter Circular 422, "The Painting of Structural Metal."

Painting interior structural steel formerly zinc-coated.In industrial plants where good light reflection from the structural steel is desired, the following procedure may be used. Apply a priming coat of quick-drying red lead paint (Procurement Division Specification No. 358), or a similar rust-inhibitive primer, followed by either two coats of eggshell flat white paint (F. S. TT-P-51a) or gloss white enamel, sometimes called "gloss mill white," (F. S. TT-E-506a). The enamel will be more water-resistant and more durable. For special conditions where fumes are encountered, such as in chemical laboratories, bakeries, tobacco factories, cafeterias, etc., a special enamel known as fume-and-heat-resisting enamel (National Bureau of Standards Letter Circular 489) may be used.
Painting steel surfaces formerly zinc-coated for subsoil or under-water exposure.-Bituminous base coatings are suggested for this purpose. The following paragraphs give some of the properties of these coatings:
(A) Cold or brush application type.
(1) Solutions of either asphalt or coal tar in a volatile distillate.-These coatings are of brushing consistency and are primarily intended for use as primers on surfaces which are subsequently to be coated with a hot application of asphalt. (See F. S. SS-A-701.) This type of material is also commonly used on surfaces where a black coating is desired, which will not be subjected to the action of heat or sunlight. These materials are known commercially as black or liquid asphaltum, bituminous paint, primers, etc.
(2) Asphalt varnish or enamels.- These materials are composed of a high-grade asphalt fluxed and blended with properly treated drying oils and thinned to a brushing consistency with a volatile solvent. (See F. S. TT-V-51.) Special types of this material will withstand dry temperatures up to $600^{\circ} \mathrm{F}$. (see U. S. Navy Specification 52-E-2a, Enamel, Black, Heat-Resisting).

These coatings in general are more durable than those listed under (1). They are primarily intended for use indoors as coatings for surfaces where a hard, black glossy surface is desired. They will, for a limited time, give adequate protection against moisture and corrosive vapors. They should not be used where they are alternately exposed to sunlight and moisture. These materials are known commercially as asphalt varnish, asphalt enamel, and heat-and-acid-resisting enamel.
(3) Cold mastic type. - These coatings consist of asphaltic materials (with or without fatty oils) and mineral filler, thinned to a heavy brushing consistency with a volatile solvent. (See F. S. SS-R-451.) This material is intended for use in the repair and coating of asphalt and metal roofing and for application to concrete, masonry, and steel structures as a dampproofing and protective coating:
(B) Hot application type.
(1) Asphalt, F. S. SS-A-666.
(2) Coal tar, F. S. R-P-381.
(3) Bituminous enamels.

A description of the characteristics and methods of application of these materials can be found beginning on page 3 of the National Bureau of Standards Letter Circular 42, "Acid-Proof Coatings for Concrete Surfaces." Reference should also be made to National Bureau of Standards Research Paper 1058, issued December 1937, "Soil-Corrosion Studies, 1934, Bituminous Coatings for Underground Service." This publication can be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C., for 10 cents.

Painted wire formerly zinc-coated.-The problem here is to suggest a paint that will be an acceptable substitute for galvanized wire screen (1-inch mesh) used in reinforcing stucco in home construction. Probably the best method would be to have the work done at the finishing plant, where the black iron screen could be passed through a tank of black, flexible enamel or japan, and then baked in suitable drying ovens prior to shipping the screen in rolls. This coating would be tough and flexible and would not chip off. The necessity of having some kind of a coating on the black iron is to prevent rust stains from "bleeding" through the stucco and paint after the building is erected. A cheaper but not as durable a method is to dip the roll of black iron screen being used on the job in a tank of a bituminous solution as described on page 259. This material would dry quickly, and since the amount of bituminous coating on any one wire would be relatively small, it is doubtful whether there would be any trouble from the bitumen "bleeding" through the stucco. Another possibility is to dip the roll in a quick-drying, thin spar varnish.
General considerations.-As can be seen from the foregoing remarks, it is possible to use Federal Specification materials or their equivalents as substitutes for zinccoated surfaces under a variety of conditions. Recommending the use of synthetic resin paints and enamels has been avoided, because of the shortage of certain ingredients used in these paints. The same statement holds true for aluminum paint. Similarly, certain highly durable cellulosic finishes could be employed, but an acute shortage of the plasticizers and solvents for these is also developing.
As has been noted previously, the condition to which the surface is exposed has a direct influence on the durability of the paint coating. Thus a coating that
may show excellent resistance under water (for example a bituminous coating) may fail rather quickly when exposed to the weather.

In using paint to replace galvanized or zinc coatings, it should be kept in mind that the condition of the surface is of utmost importance. It should be clean, dry, and free of all rust and scale prior to painting. Within practical limits, the protective value of a paint film is roughly proportional to its thickness. Thus for exterior exposure the safest procedure is to apply three coats of good paint, each coat being spread at a practical spreading rate (500 to 700 square feet per gallon). Where exposure conditions are particularly severe (for example an outside roof), it is suggested that two coats of primer and two coats of the finish paint be applied.

Equally important as the character of the surface and the thickness of paint film on the ultimate durability is the method of application. There is no substitute for skill in application. This is at least as important as the quality of the paint. It is for these reasons that the only proper method of evaluating a paint job is on the basis of cost of paint per square foot area applied per year of service.

Wherever Federal Specifications are referred to in this memorandum, they cover products which will be satisfactory for the use referred to, but for the general buying public similar products may be obtained under trade brands at any paint store throughout the country.

The paint dealer will readily recognize the material referred to.

Complete titles of Federal specifications referred to in body of the article are given below. Copies of these specifications are available from the Superintendent of Documents, Government Printing Office, Washington D. C. at 5 cents each.

Federal Specification No.
Title
TT-P-20 _..... Paint, blue-lead-base; basic sulfate, linseed oil, ready-mixed.
TT-P-31a_.... Paint; iron-oxide, ready-mixed and semipaste,
TT-P-36a_.... Paints; lead-zinc-base, ready-mixed, and semipaste, white and tinted.
TT-P-51a_.... Paints; oil, interior, eggshell-flat-finish, ready
TT-P-59_.... Paint, ready-mixed, international-orange.
TT-P-61...... Paint; ready-mixed and semipaste, black.
TT-P-71a_.... Paint; ready-mixed and semi-paste, exterior, TT-P-86_.... Paint, red-lead-base; linseed-oil, ready-mixed
TT-P-101a_-.. Paint; titanium-zinc and titanium zinc-lead, outside, ready-mixed, white.
TT-P-156_...- Paint, white-lead-base; basic carbonate, readymixed, light-tints and white.
TT-E-506a
Enamel; interior, gloss, light-tints and white.
TT-V-51..... Varnish; asphalt.
SS-A-666...... Asphalt; (for) built-up roofing, waterproofing, SS-A-701_ Asphalt-primer;

R-P-381_..... Pitch; coal-tar (for) mineral-surfaced built-up
Pitch; coal-tar (for) mineral-surfaced built-up.
roofing, waterproofing, and dampproofing.
(Continued from p. 258)
Table C.-Distribution of all privately owned vehicles by population groups in the United States in 19401

State	Vehicles owned by residents of-										
	Unincorporated areas	Incorporated places having a population of-									All places
		$\begin{aligned} & 2,500 \text { or } \\ & \text { less } \end{aligned}$	$\begin{aligned} & 2,501 \text { to } \\ & 5,000 \end{aligned}$	$\begin{gathered} 5,001 \text { to } \\ 10,000 \end{gathered}$	$\begin{gathered} 10,001 \text { to } \\ 25,000 \end{gathered}$	$\begin{aligned} & 25,001 \text { to } \\ & 50,000 \end{aligned}$	$\begin{gathered} 50,001 \text { to } \\ 100,000 \end{gathered}$	$\begin{gathered} 100,001 \text { to } \\ 250,000 \end{gathered}$	$\begin{gathered} 250,001 \text { to } \\ 500,000 \end{gathered}$	$\begin{aligned} & \text { More than } \\ & 500,000 \end{aligned}$	
	Number										
Alabama	158, 260	30, 212	19,051	18, 826	24, 824	16, 974	30,428		47, 553		346, 128
Arizona-	65,693 135,337	7,643 35,686	7,040 21,904	16,415	28,806	16,972 7,264	$\begin{aligned} & 30,153 \\ & 21,797 \end{aligned}$				143,916 269,321
California	711, 039	101, 424	117, 872	196, 265	249, 323	203, 479	253,116	212, 321	98,648	814, 002	2, 957,489
Colorado	96, 254	53, 577	21, 400	22, 126	28, 252	15, 133	14,648		103, 802		355, 192
Connecticut	149, 555	4,471	3,948	7,021	58,008	113, 687	33, 023	132, 708			502, 421
Delaware	29, 789	10,005	7,135	1,835				26, 674			75, 438
Florida	131,638	38,644	34, 247	31, 371	57, 792	48,449	22,523	150, 642			517, 306
Georgia	211,885	55, 397	28,744	28, 800	45, 975	6,345	58, 208		83, 848		519, 197
Idaho.	93,703 372,725	27,917 207,011	19,162 89,458	6,592 130,277	28, 14858	9,891 163,616	159,738	33, 967		656,479	186, 123
Indiana	396, 505	118, 101	39, 120	70, 870	72, 896	93, 986	75,653	90,665	116, 553	650,479	1, $1,074,849$
Iowa	245, 669	240, 222	74, 808	62,309	57, 177	64,683	90, 398	57, 679	116,		1,892, 945
Kansas	212, 677	114,971	43, 060	34, 285	75,095	12,565	23, 557	73, 309			589,519
Kentucky	251, 807	37,085	18, 610	25, 027	16, 845	39,966	11,360		64, 285		464,985
Louisiana	141, 667	32, 583	20.741	27, 188	18,456	23, 940	30, 212		85, 923		380, 710
Maine		82, 498	33, 980	31,785	35, 380	15, 288	18,762				217, 693
Maryland	195, 994	30,561	16,758	8,882	23, 519	16, 886				159, 193	451, 793
Massachusetts		51, 057	58, 203	88, 107	171, 813	162, 411	117, 831	161, 450		110, 033	920,905
Michigan	359, 866	181, 519	86, 658	107,737	131,845	132, 530	131, 962	102, 424		483, 555	1,718,096
Minnesota	337,503 151,520	173,101 29,289	44,407 15,717	67, 13.825	59,862 31,922 80	9,281 8,160	14, 283	24,887	247, 740		963, 956
Missouri.	277, 405	136, 276	50, 855	54,947	80, 201	23, 540	33, 241		99,883	206, 505	962, 853
Montana	100, 861	24, 359	10, 369	13,936	27,465	20,747					197, 737
Nebraska	191, 304	96, 977	22, 750	19,432	32, 298		31, 055	64, 572			458, 388
Nevada.	19,173	4, 908	3,462	7,706	10, 510						45, 759
New Hampshire		56,690	18,957	10, 062	26,043	15, 240	15, 248				142, 240
New Jersey.	184, 912	62, 843	54, 145	96, 900	145, 759	163, 223	111,088	114, 910	166, 377		1, 100, 157
New Mexico	45, 981	11, 729	8, 721	22,486	22, 202	17, 199					128, 318
New York	548, 602	115, 713	90,282	79,516	190, 555	102, 311	106, 295	128, 362	70,006	1,373, 469	2, 805,111
North Carolina	272, 731	107, 990	37, 411	38, 692	62.079	36, 060	59,342	23, 889			638,194
North Dakota	96,492	43, 533	2, 292	12, 886	17, 237	11, 278					183,718
Ohio	610, 340	169, 238	81, 843	126, 800	157, 112	141, 755	73, 526	201, 109	292, 656	214, 046	2, 068,425
Oklahoma	198, 869	78, 580	31, 247	46, 185	81, 767	20, 039		126, 871			583, 558
Oregon	164, 825	53, 774	23,073	20, 009	23, 395	10, 332			100, 003		395, 411
Pennsylvania	618, 186	171, 266	148, 993	196, 630	268, 022	104, 439	174, 675	76, 247		431, 499	2, 189, 957
Rhode Island		4, 254	12, 241	15,689	23, 002	66, 361	19, 107		48,791		189,445
South Carolina	172, 329	38, 183	24, 447	23, 641	27, 194	21, 551	36, 174				343, 519
South Dakota	95, 850	55, 574	12, 145	15, 900	24, 467	15,595					219, 531
Tennessee	189, 006	31,485	28,567	27, 325	27, 021	5,512		80, 663	60, 045		449,624
'Texas	598, 736	147, 971	113,567	124, 364	132, 384	86, 492	151, 551	54, 135	345, 353		1, 754, 553
Utah	28,689	27,488	13, 338	6,876	7, 608	12,025		45, 047			141, 071
Vermont	48,904	15,229	4, 175	12,996	7,586	7,503					96, 393
Virginia	326, 246	24, 426	14, 873	19,874	15, 040	29,060	28, 731	55, 464			513,714
Washington	243, 254	59, 910	27, 682	13, 874	39, 708	26, 964		70, 854	106,515		$588,761$
West Virgini	134,588 278,303	37,371 147,758	16,247 56,808	21,680 43,550	27.396 70,118	17,375 129,426	52,967 38,979			146, 523	307,624 911,465
W yoming	38,351	19,303	5,965	5,536	27, 112						96, 267
District of Columb									--.-.	163, 501	163, 501
Total........	9, 935, 023	3, 405, 802	1,736, 478	2, 092, 737	2,938,545	2, 265, 533	2, 069, 631	2, 108, 849	2, 137, 981	4, 758,805	33,449, 384

[^8]STATUS OF FEDERAL-AID HIGHWAY PROJECTS

[^0]: ${ }_{1}$ The tables here referred to are MV-1, State motor-vehicle registrations; MV-2, State motor-vehicle receipts; and $\mathrm{G}-1$, State motor-fuel tax receipts.
 ${ }_{2}$ The first highway planning survey was undertaken in Pennsylvania, in November 1935, and since that time the surveys have been undertaken in all States, the District of Columbia, and Hawaii.

[^1]: ${ }^{3}$ Significant Trends in Motor-Vehicle Registrations and Receipts, by Robert H. Paddock. PUBLIC ROADS, Vol. 20, No. 8, October 1939.

[^2]: ${ }^{4}$ Family Expenditures in Selected Cities, 1935-36, Vol. VI, U. S. Department of Labor, Bureau of Labor Statistics.

[^3]: ${ }^{6}$ Cars of Yesteryears, Connecticut State Department of Vehicles. (Mimeosraphed report.)

[^4]: I Source: Public Roads Administration table MV-2, 1939. Planning survey data were used for population group distribution and adjustments in vehicle types.

[^5]: Based on data from 35 Staies
 Based on data from 30 States

[^6]: ${ }^{0}$ Family Expenditures in Selected Cities, 1935-36, vol. VI, United States Depart ment of Labor, Bureau of Labor Statistice.

[^7]: ${ }^{1}$ A table giving the complete designation of the Federal Specifications referred to herein will be found at the end of this article (p. 261).

[^8]: ${ }^{1}$ Includes automobiles, trucks, tractor-trucks, busses, trailers, semitrailers, and motorcycles.

